Taler SAP integration: Theoretical
Framework and Practical
Implementation

Bohdan Potuzhnyi, Vlada Svirsh

Berner
Fachhochschule

2024-2025

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Bohdan Potuzhnyi, Vlada Svirsh 1

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Abstract

This thesis explores the theoretical integration of the GNU Taler Merchant Backend with dif-
ferent ERP systems such as SAP and Dolibarr, aiming to streamline transaction processing,
financial management, resource planning, and customer relationship management. GNU
Taler — a digital payment system designed for secure and private transactions, is examined
in the context of ERP systems like SAP and Dolibarr. The thesis provides a comprehensive
theoretical framework for the integration, including an analysis of system architecture,
methodology, and data flow. Emphasis is placed on real-time data synchronization, the
automation of manual processes, and the security protocols necessary for ensuring data
integrity. While the focus is primarily on the theoretical aspects of integration, this thesis
also outlines potential practical implications for future implementations in various ERP
environments, particularly SAP S/4HANA and Dolibarr. The thesis lays the groundwork for
further development and testing by offering detailed insights into the technical require-
ments and challenges of such an integration. This thesis includes a section on the practical
implementation of the integration in the SAP S/4HANA system, debating the correctness
of the proposed solution and describing the challenges of such integration.

Bohdan Potuzhnyi, Vlada Svirsh 2

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025
Contents

1 Introduction 8

1.1 Background e e e 8

1.2 ProblemStatement. 9

121 KeyChallenges e 9

1.3 Criteriaof Working System 10

1.4 Conclusion e 11

2 Technology Overview of Existing Components 12

2.1 Overview of Taler MerchantBackend 12

2.1.1 Free Software Nature and Architecture 12

2.1.2 Handling Digital Transactions 13

2.1.3 Business Tools of the Taler MerchantBackend 13

2.14 GNUTalerAPI&Webhooks 15

22 Overview of SAP o e e 16

2.2.1 Historyand Evolutionof SAP 16

2.2.2 KeyModulesinSAP e e 17

2.2.3 Integration Capabilitiesof SAP o L 17

2.2.4 Benefitsof usingSAP 18

2.3 OverviewofDolibarr e 18

2.3.1 Key Features and ModulesinDolibarr. 18

2.3.2 Integration Capabilitiesof Dolibarr 19

2.3.3 Benefitsof UsingDolibarr, 19

2.4 Existing Integration Solutions L 20

3 Technical Design of Integration Solution 22

3.1 Design OVerview o e e e e e e e e e e 22

3.1.1 High-level Architecture 22

3.1.2 Infrastructureand Packaging 24

3.1.3 CentricIntegrationDesign o 28

3.2 Taler-Centriclntegration e 30

3.2.1 High-levelDataFlow 30

3.2.2 Inventory ManagementProcess o oo 30

3.2.3 Sales Process with Transfer After OrderisCreated 35

3.2.4 Sales Process with Transfer After OrderisPaid 40

325 RefundProcess. e e 47

Bohdan Potuzhnyi, Vlada Svirsh 3

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.3 ERP-Centricintegration e 51
3.3.1 High-levelDataFlow 51

3.3.2 Inventory ManagementProcess oo 51

3.3.3 SalesSProcess oo i e e 53

334 RefundProcess o i 57

3.3.5 PaymentReconciliationProcess, 61

34 Userinterface e 62

4 Practical Implementation in the SAP S4/HANA Environment 63
4.1 IntegrationOverview L e e e 63
4.1.1 SystemConfiguration 64

4.2 Packagelmplementation. 66
4.2.1 ArchitecturalUpdates e 66

4.2.2 DatabaseTablesOverview 69

423 Userinterface i i i i 71

4.2.4 DataSynchronization e 72

4.3 Transaction/OrderFlow e 73
4.4 Challengesand Solutions 76
44,1 \Userinterface and howdid weevenenduphere... 76

442 Security and Compliance of thispackage 78

443 OperationalChallenges 79

4.4.4 BenefitsandAddedValue o 80

5 Discussion 81
5.1 Limitations L e e e e 81
5.2 Security Considerations e e e 81
5.3 IntegrationStrategy 81

6 Conclusion 84
6.1 KeyFindings e e e e e 84

6.2 Practical Implications e 84

6.3 FutureWork e e e 84
References 85
Appendices 87
Appendix A: Webhook documentationforTaler 87
AppendixB: UlSamples e e e e 91

Bohdan Potuzhnyi, Vlada Svirsh 4

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

List of Figures
1 Business Process Flow Diagram: High-level Overview of Typical SalesOrder 22
2 Component Diagram: Initial Simplified Infrastructure of theERP 24
3 Component Diagram: Initial Taler Infrastructure 25
4 Component Diagram: Proposed Infrastructure of the Integration 27
5 Package diagram: ERP and Taler Integration 28
6 Data Flow Diagram: High-level Communication of Taler as Source of Truthand ERP . . 30
7 BPMN: Inventory Management Processfrom Taler 31
8 BPMN Sub-process: Update CategoriesfromTaler 31
9 BPMN Sub-process: Update ProductsfromTaler 32
10 Sequence Diagram: Inventory Management Process from Taler 34
11 BPMN: Sales Process from Taler on Order BeingCreated 36
12 Sequence Diagram: Sales Process from Taler on Order Being Created Part1 38
13 Sequence Diagram: Sales Process from Taler on Order Being Created Part2 39
14 BPMN: Sales Process from Taler on Order BeingPaid 41
15 BPMN Sub-process: Create Order and Initiate Goods Issue 42
16 BPMN Sub-process: Check Inventory for Order Creationfrom Taler 42
17 Sequence Diagram: Sales Process from Taler on Order Being Paid Part1 44
18 Sequence Diagram: Sales Process from Taler on Order Being Paid Part1.5 45
19 Sequence Diagram: Sales Process from Taler on Order Being Paid Part2 46
20 BPMN:Refund ProcessfromTaler 48
21 Sequence Diagram: Refund ProcessfromTaler 50
22 Data Flow Diagram: High-level Communication of Taler and ERP as Source of Truth . . 51
23 BPMN: Inventory Management Process from ERP System 52
24 Sequence Diagram: Inventory Management Process from ERP System 53
25 BPMN: Sales Processfrom ERP System, 54
26 Sequence Diagram: Sales Process fromERP System 56
27 BPMN:Refund ProcessfromERPSystem, 58
28 Sequence Diagram: Refund Order from ERP System 60
29 BPMN:Bank ReconciliationProcess 61
30 Ul:MainDashboard (NotSynced) 62
31 Ulscreenshot: Taler SAP Settingspage i i i i v it i, 64
32 Component Diagram: Infrastructure of the IntegrationtoSAP 67
33 Package diagram: SAP and Taler Integration L. 68
34 ERD:Taler SAPIntegration e e 70
35 Ulscreenshot: Taler SAP Http logspage v i .. 71
36 Ulscreenshot: Taler SAP Notificationpage, 72

Bohdan Potuzhnyi, Vlada Svirsh 5

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

37
38
39
40
41

42
43
44
45
46
47
48

BPMN: Sales Process from SAP System 74
Order flow: Sales processfrom SAPSystem 75
Report screenshot: Fetching billing documentsfromSAP 77
BSP screenshot: Sample BSP application to see different tools and features 77
Ul screenshot: Integrated order payment view in SAP with QR code generated from

TalerBackend e 78
Ul: MainDashboard e 91
Ul:Inventory View o o o e e e e 92
Ul: NotificationView o 92
UL OrdersView e e e e e e e 93
Ul: TransactionView o e 93
Ul: SettingsView e e 94
Ul: Settings Set-upView e 94

Bohdan Potuzhnyi, Vlada Svirsh 6

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Terminology

10.

11.

12.

13.

14.

15.

Taler — A protocol for digital cash.
GNU Taler — Software supporting the Taler protocol.

Consumer — The person or company interacting with a business. This includes individual
customers and corporate clients buying goods or services. In the context of GNU Taler integration,
consumers represent the end users of the payment system.

Merchant — The business entity that uses the GNU Taler Merchant Backend for processing
transactions, selling goods, and issuing refunds.

Goods — A general term describing the items in inventory, including both physical and digital
products, used in sales or refund processes.

ERP — Enterprise resource planning software system that helps organizations(merchants) stream-
line their core business processes.

SPAA (Single-Page Administration Application) — The web-based administration tool for using
the GNU Taler Merchant Backend.

CRM — Customer Relationship Management.

SMEs (Small and Medium-sized Enterprises) — Businesses with limited resources compared
to larger corporations.

SAP R/3 — An older version of SAP ERP software, which has been succeeded by SAP S/4HANA.

SAP S/4HANA — The latest version of SAP ERP software, designed for real-time data processing
and analytics.

Order document — A standard name in the SAP system for documents that record information
about one specific order in SAP systems.

Billing document — A standard name in the SAP system for documents that record information
about one specific billing document, treat as request to be paid.

SAP SuccessFactors — A cloud-based solution for human capital management (HCM) that
integrates with the SAP ecosystem.

T-code — Short for “Transaction Code,” a unique identifier in SAP systems that allows users to
access specific functions or screens.

Bohdan Potuzhnyi, Vlada Svirsh 7

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

1 Introduction

1.1 Background

In recent years, the need for secure and efficient digital payment solutions has increased, particularly
as central banks consider digital alternatives to physical cash. The integration of GNU Taler with
enterprise resource planning (ERP) systems such as SAP and Dolibarr reflects this evolution, offering
privacy-focused, free software payment solutions in modern business environments.

GNU Taler is a free software [1] digital cash system [2] designed to provide privacy for users while
offering transparency of merchants. Its unique feature is the use of cryptographic techniques to ensure
payment privacy while adhering to anti-money laundering (AML) regulations. Unlike digital currencies
such as Bitcoin, Taler prioritizes transactional privacy without relying on distributed ledger technology
(DLT) [3].

The integration of Taler with SAP highlights the demand for efficient payment systems in large-scale
ERP environments. SAP, a globally dominant ERP system, provides businesses with comprehensive
tools for financial management, supply chain optimization, and customer relationship management
(CRM). Integrating GNU Taler within SAP’s financial modules offers businesses the potential to automate
and secure their financial transactions, enhancing operational efficiency and ensuring compliance with
privacy standards. This integration could modernize how large enterprises handle digital payments,
while reducing risks associated with traditional banking channels.

On the other hand, Dolibarr, as an open-source ERP and CRM system [4] aimed at small to medium-
sized enterprises (SMEs), offers a simpler but equally adaptable platform for managing business
operations, including billing, payments, and CRM. The addition of GNU Taler to Dolibarr enhances its
appeal by incorporating secure digital payments, allowing SMEs to benefit from the same transaction
security and privacy features as larger corporations using SAP.

As central banks explore digital currency issuance, such as the proposal discussed by Chaum,
Grothoff, and Moser (2021) on Central Bank Digital Currencies (CBDCs) [5], the importance of
privacy-preserving payment methods like GNU Taler is underscored. Their research outlines how
token-based digital currencies, such as those based on GNU Taler, can offer privacy, scalability, and
compliance with regulations. This kind of integration mirrors the ongoing global discourse on digital
payments and CBDCs, emphasizing how innovative digital cash systems can be used in modern
enterprise environments.

By integrating Taler into ERPs, businesses can streamline transaction processing, reduce manual
interventions, and enhance data accuracy, while ensuring a scalable solution for future financial
operations. This integration aligns with the broader trend of digital currency adoption and provides a
theoretical framework for businesses aiming to improve their digital payment infrastructure.

Bohdan Potuzhnyi, Vlada Svirsh 8

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

1.2 Problem Statement

In today’s digital economy, businesses face a variety of operational challenges when using isolated
systems for transaction processing, financial management, and customer relationship management
(CRM). Platforms such as GNU Taler, SAP, and Dolibarr provide powerful functionalities individually but
present significant inefficiencies and risks when operated as standalone solutions without integration.
These issues become particularly pronounced for businesses requiring streamlined financial manage-
ment, enhanced customer interaction, and real-time synchronization between transactional, financial,
and operational data.

1.2.1 Key Challenges

Integrating GNU Taler with ERP systems such as SAP and Dolibarr introduces significant opportunities
for businesses to streamline operations and enhance efficiency. However, several challenges must be
addressed to realize these benefits. The following points outline the critical challenges to effective
integration and highlight their implications:

1. Data Silos and Fragmentation: GNU Taler’s Merchant Backend, which acts as a service managing
inventory, categories, orders, and payments, remains limited in scope when businesses rely on
itin isolation. While it can handle basic e-commerce functionalities, for many businesses it is
essential to integrate these operations with more powerful ERP systems like SAP and Dolibarr.
Without integration, businesses operate in fragmented silos where transaction data from Taler’s
backend does not automatically synchronize with financial records or customer management
in SAP or Dolibarr. This data fragmentation leads to difficulties in acquiring a unified view of
business performance, making resource planning and financial forecasting more challenging.

2. Manual Data Entry, Errors, and Redundancy: The lack of integration between Taler’s Merchant
Backend, SAP, and Dolibarr necessitates the manual transfer of data across systems, such as re-
entering order and payment details from Taler into SAP for inventory management or Dolibarr for
financial reporting. This manual input process introduces human error and redundancy, which
can result in mismatched data between platforms, leading to inaccurate reports, incomplete
inventory counts, or payment processing issues. Manual data entry not only wastes valuable
time but also increases the risk of non-compliance with tax regulations, which require accurate
and up-to-date financial records.

3. Limited Automation and Inefficient Workflows: Businesses using GNU Taler, SAP, and Dolibarr
in isolation lose opportunities for automating key workflows. For example, when a payment is
processed through Taler’s Merchant Backend, the inventory in SAP or financial ledgers in Dolibarr
are not automatically updated. Additionally, tax reporting and financial statements, which are
critical for business compliance, must be manually generated by cross-referencing data from

Bohdan Potuzhnyi, Vlada Svirsh 9

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

separate systems. By integrating Taler with SAP and Dolibarr, businesses can automate the flow
of data from the point of transaction to financial reconciliation, tax reporting, and inventory
management, significantly improving operational efficiency and reducing reliance on manual
processes.

4. Inconsistent Financial Management and Reporting: One of the limitations of using GNU Taler
without integration is that it lacks the financial management capabilities of comprehensive ERP
systems like SAP. For example, tax reporting, auditing, and detailed financial analytics will require
integration with more powerful ERP systems that offer these advanced features. Businesses
need access to bank account data for more efficient cash flow management, and integration of it
with comprehensive ERP system which helps to achieve proper handling of tax reports, legal
requirements, and regulatory compliance.

5. Security, Compliance, and Governance Risks: Separate systems increase the difficulty of
ensuring consistent security protocols and governance across platforms. For instance, while
GNU Taler focuses on secure payment processing, it may not inherently align with SAP’s security
governance for enterprise-wide financial data. Furthermore, integrating all systems enables
better compliance with industry regulations, such as GDPR, and provides clearer audit trails
for tax and accounting purposes. Additionally, automated synchronization between systems
can contribute that sensitive information, such as payment details and tax reports, is uniformly
managed under strict governance policies, reducing the likelihood of security breaches or data
leaks.

6. Delayed and Fragmented Decision-Making: The inability to integrate GNU Taler’s Merchant
Backend with SAP or Dolibarr causes delays in decision-making, as managers lack real-time
visibility into financial data, customer interactions, and inventory status. This delay can lead to
missed business opportunities and slower responses to market changes. An integrated system
would allow businesses to see financial transactions, customer orders, and inventory levels in
real time, improving decision-making capabilities. For example, when payments are processed
through Taler, integration would ensure that this data is reflected in SAP’s financial module and
Dolibarr’s CRM for more accurate, up-to-date insights.

1.3 Criteria of Working System

To fully leverage the benefits of integrating GNU Taler with ERP systems like SAP and Dolibarr, the
solution must meet several key criteria. These elements ensure the system is efficient, reliable, and
valuable to businesses:

+ Seamless Integration of GNU Taler’s Merchant Backend with ERP: The primary objective
is to create an integrated ecosystem where GNU Taler’s Merchant Backend, SAP, and Dolibarr

Bohdan Potuzhnyi, Vlada Svirsh 10

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

communicate seamlessly. This will enable businesses to utilize the privacy and security features
of Taler for transaction processing while benefiting from the extensive financial management,
customer relationship management (CRM), and enterprise resource planning (ERP) capabili-
ties offered by SAP and Dolibarr. Integrating these systems will streamline workflows, reduce
operational complexity, and allow for smoother data exchange between payment processing,
inventory management, and financial accounting.

+ Real-Time Data Synchronization for Payments, Sales Orders, and Financial Records: A key
goal of this integration is real-time data synchronization between the systems. When payments
are processed through the Taler platform, the system should automatically update sales orders,
inventory, and financial records in SAP and Dolibarr. This real-time synchronization ensures
accurate financial management, providing businesses with an up-to-date overview of their
transactions, available stock, and customer orders. Moreover, it facilitates timely reporting and
compliance with tax regulations, offering significant value to both small and large enterprises.

« Automation of Manual Processes to Improve Operational Efficiency: This integration aims to
enhance operational efficiency by automating manual processes such as data entry, inventory
tracking, and financial reconciliation. GNU Taler’s Merchant Backend currently acts as a service
managing payments, orders, and inventory, but without integration, much of this data needs to
be manually transferred into larger ERP systems like SAP and Dolibarr. Automation will reduce
human error, enhance productivity, and enable faster processing times, leading to cost savings
and better resource management for businesses.

+ Integration with Bank Account Information and Tax Reporting: Another objective is to estab-
lish a clear path for businesses to access bank account information, automate bank reconcilia-
tions, and generate comprehensive tax reports within the integrated system. By integrating GNU
Taler’s platform with ERP systems that have advanced financial modules, businesses can access
vital financial data, conduct efficient cash flow analysis, and ensure proper tax compliance. This
objective aims to facilitate smoother financial management for businesses, especially when
handling multiple accounts and complying with legal and tax obligations.

1.4 Conclusion

The integration of GNU Taler with ERP systems like SAP and Dolibarr is a significant step forward in
modernizing business operations and embracing the evolving digital payment landscape. By combining
the privacy and security features of GNU Taler with the powerful financial and resource management
tools of ERP platforms, businesses can streamline transactions, reduce manual interventions, and
ensure compliance with regulatory standards. As central banks explore digital cash initiatives, solutions
like GNU Taler align with the global push for secure and privacy-preserving payment systems, paving
the way for more efficient financial ecosystems.

Bohdan Potuzhnyi, Vlada Svirsh 11

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

2 Technology Overview of Existing Components

2.1 Overview of Taler Merchant Backend

GNU Taler is a free software digital payment system designed with privacy, security, and simplicity at
its core. It is built with privacy-preserving design that ensures that consumer remains anonymous,
while merchants transactions are still open and clear for tax authorities. The GNU Taler merchant
backend is a central component in facilitating these transactions, providing a structured framework
for managing orders, payments, and refunds. 3]

2.1.1 Free Software Nature and Architecture

GNU Taler is developed as part of the GNU project for the GNU operating system [2], adhering to
the objectives of transparency and security. As free software, it aligns with the principles of the four
essential freedoms defined by the Free Software Foundation [1]:

Freedom to Run the Program
Freedom to Study and Modify
Freedom to Redistribute Copies

> wn e

Freedom to Distribute Modified Versions (for GNU Project only with copyleft licenses [6])

Its modular design includes several key components, including the merchant backend, exchange, and
consumer wallet. The merchant backend serves as the intermediary between the merchant’s website
and the exchange (which processes payments), abstracting the complexity of network communications
and cryptographic operations.

The architecture of Taler consists of multiple distinct processes that handle various aspects of digital
transactions:

1. MerchantBackend: This handles the core functions such as creating orders, managing payments,
and verifying consumer transactions, as well as running the GNU Taler merchant single-page
administration application.

2. Exchange: The exchange manages the issuance and redemption of digital coins. It is responsible
for handling consumer payments in predefined currency, as well as managing refunds and
auditing functions. This service is typically created and maintained by local authorities or
financial institutions such as banks.

3. Wallet: The wallet is a browser extension or app that consumers use to hold digital coins and
interact with merchants or other consumers (e.g. for the peer-to-peer payments).

Bohdan Potuzhnyi, Vlada Svirsh 12

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The whole system ensures that merchants can accept payments without learning the identities of the
consumers, thus maintaining the anonymity promised by the system. Merchants only interact with
order and contract terms, which include the payment details and resources being purchased.

2.1.2 Handling Digital Transactions

The GNU Taler merchant backend handles digital transactions by abstracting the complexities of cryp-
tographic operations involved in Taler. When a consumer makes a purchase, the backend facilitates:

1. Order Creation: The merchant frontend creates a digital contract with the necessary details,
such as product information and the amount to be paid.

2. Payment Processing: The backend interacts with the consumer’s wallet, which submits the
payment information in the form of deposit permissions. The merchant backend ensures that
these permissions are cryptographically valid.

3. Order Fulfillment: Once the payment is confirmed, the backend gives confirmation of the pay-
ment, and business can serve the appropriate resource (such as a digital product or confirmation
page) to the consumer.

The backend operates through a RESTful API, making it easy to integrate with various e-commerce
platforms or custom-built websites. Merchants can use this API to track payment statuses, view
transaction histories, and handle refunds seamlessly. This makes Taler a flexible and powerful solution
for digital businesses that require a secure and privacy-respecting payment system.

In summary, GNU Taler’s merchant backend is a robust system that streamlines the process of handling
digital transactions while ensuring anonymity for consumers and transparency for merchants. The free
software nature of the project allows developers and businesses to adapt the system to their specific
needs while adhering to strong privacy and security standards.

2.1.3 Business Tools of the Taler Merchant Backend

The Taler merchant backend offers a robust suite of tools designed to facilitate secure and efficient
e-commerce transactions while adhering to privacy and regulatory frameworks. The system’s architec-
ture supports various business functionalities, enabling merchants to manage financial operations,
maintain security, and ensure compliance with industry standards. [7]

1. Order Management System: The backend provides comprehensive order management tools.
Merchants can generate, track, and manage consumer orders via API integrations with their
e-commerce platforms or through manual creation within the backend itself. Once an order is

Bohdan Potuzhnyi, Vlada Svirsh 13

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

created, it transitions into a contract once payment is received. The backend also supports auto-
matic reconciliation of orders with bank settlements, which streamlines operational workflows.

2. Inventory Control and Management: A key feature of the Taler Merchant backend is inventory
management. This feature is particularly useful for businesses selling physical goods or limited
digital products. Merchants can define stock levels, and the backend ensures that available
inventory is accurately reflected in consumer orders, preventing overselling and ensuring that
order fulfillment is aligned with stock availability.

3. Payment and Transaction Security: Taler’s payment system is built on strong cryptographic
principles, ensuring both the privacy of consumers and the accountability of merchants. The
backend manages all payment processes securely, handling sensitive data like signing keys
and banking information internally. The payment process is designed to be compatible with
established banking systems, allowing merchants to receive funds in traditional currencies, such
as EUR or USD, directly into their bank accounts.

4. Refund Processing: The system includes support for processing refunds. If an order cannot be
fulfilled, merchants can issue refunds to consumers. However, refunds are only possible before
the funds have been fully transferred from the Taler exchange to the merchant’s account, adding
a layer of protection for exchange.

5. Automated Financial Settlements: By leveraging GNU Taler merchant backend APIs, the back-
end automates the process of settlement reconciliation. Incoming wire transfers from exchanges
are automatically matched with the corresponding orders. This reduces the need for manual
intervention, enhances accuracy, and ensures that financial records remain consistent and
compliant with auditing standards.

6. Customization and Reporting Capabilities: The Taler Merchant backend offers significant
flexibility, allowing businesses to customize contracts, payment terms, and reporting structures.
Merchants can adjust key parameters such as payment deadlines, currencies accepted, and
legal conditions (e.g., terms of service and privacy policies). The system also supports detailed
financial reporting, making it easier for merchants to comply with regulatory requirements, such
as GDPR, anti-money laundering (AML), and know-your-customer (KYC) regulations.

7. Webhook Integration for Business Automation: The Taler Merchant backend is equipped with
webhook capabilities, enabling businesses to automate processes such as updating inventory,
notifying consumers, or triggering fulfillment workflows. Webhooks can be configured to respond
to specific events like payment completions or refunds, providing seamless integration with
external business systems and improving operational efficiency.

While providing overall good base for the businesses to operate, the Taler Merchant Backend lacks
the comprehensive tools that is present in more detailed ERP systems like SAP and Dolibarr. This is

Bohdan Potuzhnyi, Vlada Svirsh 14

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

where the integration of Taler with these systems can provide a significant value to the businesses,
allowing them to leverage the privacy and security features of Taler while benefiting from the advanced
financial management, resource planning, and consumer relationship management capabilities of
advanced ERP systems.

2.1.4 GNU Taler APl & Webhooks

Integrating GNU Taler with an ERP system requires developers to work with two primary components:
the GNU Taler API and the Taler Webhooks System. These components form the foundation of the
communication framework between the GNU Taler Merchant Backend and the ERP system, ensuring
seamless synchronization of key business operations such as order management, payment processing,
and inventory updates.

2.1.4.1 GNU Taler API The GNU Taler API provides a comprehensive set of endpoints to manage
merchant backend operations. These endpoints enable developers to:

+ Manage product categories (e.g., create, update, delete).
+ Handle inventory updates, including adding, editing, or deleting products.

Process orders, including creating orders, checking payment status, and issuing refunds.
« Configure point-of-sale (PoS) settings.

Query and manage wire transfers.

Developers can reference the detailed APl documentation on the official website [8] for a complete list
of available endpoints and their descriptions. Also as part of this project we have created the filtered
list of APIs to the one that most developers would need in this integration. It is available in 2 forms:

1. OpenAPl13.0[9]
2. Postman collection [10]

For instance:

« To create a new order, developers can use the endpoint POST /instances/{INSTANCE}/
private/orders and provide order details in the request body.

« Toissue a refund, the endpoint POST /instances/{INSTANCE}/private/orders/{
ORDER_ID}/refund can be used, specifying the refund amount and reason.

2.1.4.2 GNU Taler Webhooks System The Taler Webhooks System facilitates event-driven commu-
nication by notifying external systems, such as the ERP, when specific events occur. Key features of the
webhook system include:

Bohdan Potuzhnyi, Vlada Svirsh 15

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

« EventTypes: Supportsvariousevents,suchasorder_pay (paymentreceived),order_refund
(refund issued), and inventory_updated (inventory changes). See Appendix A for a full list
of event types and their triggers.

+ Retry Mechanism: Webhooks are designed to automatically retry requests with exponential
backoff in case the target server is temporarily unavailable. This ensures reliable delivery even
during downtime.

+ Customization: Webhook payloads can be customized using Mustache templates to include
event-specific data fields such as order_1id, refund_amount, or product_serial.

Developers can configure webhooks using endpoints such as:

« POST /instances/{INSTANCE}/private/webhooks to create a new webhook.
GET /instances/{INSTANCE}/private/webhooks toinspect existing webhooks.

« PATCH /instances/{INSTANCE}/private/webhooks/{WEBHOOK_ID} to updatea
webhook.

DELETE /instances/{INSTANCE}/private/webhooks/{WEBHOOK_ID} to delete
a webhook.

For example, to receive notifications about completed payments, a webhook can be configured for the
order_pay event. The webhook will send the order_1id and contract_terms to the specified
target URL whenever a payment is completed.

2.2 Overview of SAP

SAP (Systems, Applications, and Products in Data Processing) is a globally leading enterprise resource
planning (ERP) software designed to support business operations across multiple functions, including
finance, supply chain management, production, and human resources. SAP ERP integrates various
business processes into a unified system, enabling departments within an organization to collaborate
efficiently and share data seamlessly [11].

2.2.1 History and Evolution of SAP

Systemanalyse Programmentwicklung, founded in 1972, started developing ERP software for com-
panies, and in 1973, ‘SAP R/1’ was born [12]. Over the following years, SAP evolved into one of the
most comprehensive ERP systems globally, capable of managing complex business operations across
multiple industries [13]. Its flagship product, SAP ERP, has undergone several iterations, with SAP
S/4HANA as the latest version. S/4HANA represents a next-generation ERP platform, leveraging in-
memory computing through the SAP HANA database to enable real-time data processing and analytics
[14].”

Bohdan Potuzhnyi, Vlada Svirsh 16

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

This modern iteration integrates advanced technologies such as machine learning, artificial intelligence,
and predictive analytics, allowing businesses to make more informed decisions, reduce operational
costs, and enhance overall efficiency [15]. SAP S/4HANA’s architecture is particularly suited for real-time
data processing, making it highly compatible with digital payment systems like GNU Taler.

2.2.2 Key Modules in SAP

SAP ERP is composed of modular components, each designed to address specific business needs.
Several key modules are particularly relevant to integrating with GNU Taler:

+ Financial Accounting (FI): This module manages all financial transactions within a business,
including general ledger accounting, accounts payable, accounts receivable, and tax accounting
[13]. It would be instrumental in recording and processing transactions made through GNU Taler.

+ Controlling (CO): This module supports internal financial reporting and cost management. It
is closely integrated with the FI module and provides functionality for budget planning and
variance analysis [11]. Integration with GNU Taler could provide real-time insights into cost
management based on payment data.

+ Sales and Distribution (SD): Responsible for handling sales orders, pricing, shipping, and
billing, the SD module would play a crucial role in integrating GNU Taler by managing consumers
payments and synchronizing sales orders with financial data [16].

« Materials Management (MM): This module deals with procurement and inventory control,
ensuring that stock levels are maintained based on sales orders [14]. Integrating this module
with GNU Taler could automate inventory updates in real-time based on consumer transactions.

+ Customer Relationship Management (CRM): CRM helps businesses manage consumer interac-
tions and sales processes. Integrating GNU Taler with CRM would enhance consumer experience
by synchronizing payment data with consumer profiles, streamlining support and sales processes
[11].

2.2.3 Integration Capabilities of SAP

SAP offers robust integration capabilities, allowing external systems to interact with its modules. The
two most common methods for integration are:

« BAPIs (Business Application Programming Interfaces): These predefined functions in SAP
allow external applications to access business objects and processes. BAPIs provide a consistent
method for integrating SAP with third-party systems like GNU Taler, ensuring stable and secure
interactions [17].

Bohdan Potuzhnyi, Vlada Svirsh 17

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

+ IDocs (Intermediate Documents): IDocs are standard data structures in SAP used for trans-
ferring data between systems. They support asynchronous communication and can be used
to transmit payment data between GNU Taler and SAP ERP [18]. This is particularly useful for
ensuring that financial transactions and sales orders are recorded accurately and in real time.

2.2.4 Benefits of using SAP

SAP is a powerful ERP system that helps businesses streamline their operations and stay competitive.
Some of its key benefits include:

« Automated Transaction Processing: SAP simplifies complex workflows, such as financial
management and sales order handling, saving time, reducing errors, and boosting productivity
[19].

+ Real-Time Insights: With the advanced S/4HANA platform, SAP delivers real-time analytics,
enabling businesses to make faster, smarter decisions and adapt quickly to changes in the market
[15].

+ Better Financial Management: The financial tools in SAP, like the Financial Accounting (FI) and
Controlling (CO) modules, make it easier for businesses to manage budgets, ensure compliance,
and generate accurate reports [20].

+ Strong Security and Compliance: SAP provides built-in features to meet international reg-
ulations, like GDPR and AML, while protecting sensitive data and ensuring secure business
operations [13].

2.3 Overview of Dolibarr

Dolibarr is a comprehensive, open-source ERP and CRM system, primarily designed for small and
medium-sized enterprises (SMEs). Known for its modular architecture and user-friendly interface,
Dolibarr allows businesses to streamline their operations by integrating essential functions such as
billing, payments, inventory management, and customer relationship management into a single
platform. Its open-source nature makes it highly customizable, enabling businesses to adapt the
system to their specific needs without incurring high licensing costs [21].

2.3.1 Key Features and Modules in Dolibarr

Dolibarr offers a range of core modules, each designed to manage specific business functions. The
following modules are particularly important for enterprises looking to handle billing, payments, and
customer management:

Bohdan Potuzhnyi, Vlada Svirsh 18

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

+ Billing and Invoicing: Dolibarr provides a robust invoicing system that enables businesses
to generate, send, and track invoices. The module also handles recurring invoices and offers
comprehensive reporting features. The integration with payment gateways allows businesses to
track paid and unpaid invoices and manage overdue payments more efficiently [22].

« Payments: This module supports the processing of payments from multiple sources, including
credit cards, bank transfers, and online payment systems. By automating the reconciliation
process, Dolibarr helps reduce manual data entry errors and ensures that financial transactions
are recorded accurately. Additionally, the system supports the management of partial payments
and refunds [23].

« Customer Relationship Management (CRM): Dolibarr’s CRM module enables businesses to
manage their interactions with current and prospective consumers. The module includes tools
for tracking consumer communications, managing sales pipelines, and handling after-sales
support. Integration with the billing and payments modules allows consumer data to be updated
automatically when financial transactions occur, improving overall consumer experience and
operational efficiency [24].

2.3.2 Integration Capabilities of Dolibarr

Dolibarr offers strong integration capabilities with other systems through APIs and webhooks. Its
REST APl enables seamless communication between Dolibarr and external applications, allowing for
real-time data synchronization across various platforms. This feature is crucial for businesses that
need to integrate Dolibarr with e-commerce platforms, payment gateways, or other ERP systems [23].
Additionally, webhooks allow for the automation of workflows by triggering specific actions, such as
updating inventory or generating invoices when a payment is processed [22].

Also, one of the key advantages of Dolibarr is its modular design, which allows businesses to activate
only the modules they need. This makes it highly scalable, catering to both small companies with mini-
mal needs and larger enterprises that require more complex functionalities. The system is also highly
customizable due to its open-source codebase, allowing developers to modify or extend functionalities
according to the specific needs of the business [21].

2.3.3 Benefits of Using Dolibarr

+ Cost-Effective: As an open-source platform, Dolibarr eliminates the high costs associated with
licensing fees found in many proprietary ERP systems, making it an affordable option for SMEs
[24].

Bohdan Potuzhnyi, Vlada Svirsh 19

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

+ Ease of Use: The user-friendly interface of Dolibarr, combined with its modular structure, makes
it easy for businesses to implement and scale the system as their needs evolve [21].

+ Improved Business Efficiency: By centralizing key business functions such as billing, payments,
and CRM, Dolibarr helps businesses reduce redundancy, streamline operations, and improve
accuracy in financial and consumer management tasks [23].

Challenges and Considerations

Although Dolibarr offers many advantages, it may not provide all the advanced features required by
larger enterprises or highly specialized industries. In such cases, businesses may need to invest in
additional development or third-party integrations to extend Dolibarr’s capabilities [24].

2.4 Existing Integration Solutions

Currently, there are no existing integration solutions that incorporate GNU Taler into comprehensive
ERP systems, particularly in the areas of inventory management, order management, and financial
accounting. The primary focus of existing integrations has been on payment processing within e-
commerce platforms such as WooCommerce, Pretix, and Joomla!, where GNU Taler serves as a privacy-
friendly payment option for online merchants. These integrations offer essential payment processing
functionalities, but they do not extend to the broader business operations typically managed by ERP
systems, such as resource planning, financial reporting, and supply chain management. [25]

For instance, the integration of GNU Taler with WooCommerce allows merchants to accept Taler
payments for online sales, while Pretix and Joomla! integrations provide similar capabilities for event
ticketing and content management platforms, respectively. However, these integrations primarily
focus on the transaction phase, ensuring secure and private payments through GNU Taler’s backend,
without directly addressing the need for broader ERP functionalities such as synchronizing payments
with inventory levels or automating financial reconciliation with general ledgers.

Additionally, the existing solutions do not provide seamless integration with comprehensive ERP
systems like SAP or Dolibarr, which are designed to handle end-to-end business processes. SAP and
Dolibarr support extensive modules for managing financial transactions, order fulfillment, customer
relationship management (CRM), procurement, and more. The lack of integration with ERP systems lim-
its the potential for businesses to automate workflows beyond payment processing, such as automatic
updates to stock levels, order status tracking, or real-time financial reporting based on transactions
processed through GNU Taler.

Integrating GNU Taler with ERP systems like SAP or Dolibarr would be a pioneering step, as it would
enable businesses to synchronize their digital payment transactions with their overall operations,
including supply chain management, sales order fulfillment, and financial accounting. For example,

Bohdan Potuzhnyi, Vlada Svirsh 20

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

businesses could use such an integration to automate the process of updating inventory based on sales
processed through GNU Taler, while ensuring that payments are reflected in their financial records in
real-time.

This type of integration would create a unified business environment where data flows seamlessly
between the payment gateway and other business systems, significantly improving operational effi-
ciency, reducing manual data entry, and enhancing the accuracy of financial reporting. It would also
extend the value proposition of GNU Taler beyond e-commerce platforms to more complex business
environments that rely on ERP systems to manage their operations holistically.

In conclusion, while existing integrations with platforms like WooCommerce, Pretix, and Joomla! serve
as valuable starting points for using GNU Taler in e-commerce, they fall short in addressing the broader
business needs managed by ERP systems. The broder integration of GNU Taler with SAP and Dolibarr
would be a groundbreaking development, opening the door for future integrations with other ERP
systems and providing businesses with the tools they need to manage their entire operations more
efficiently, securely, and with enhanced privacy.

Bohdan Potuzhnyi, Vlada Svirsh 21

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3 Technical Design of Integration Solution

3.1 Design Overview

The integration of GNU Taler with ERP systems requires updates to the existing system architecture to
accommodate new functionalities and ensure seamless interaction between components. This section
provides a detailed view of the existing Taler and ERP infrastructure, proposed infrastructure, and the
components involved, as represented through component and package diagrams.

Before delving into the subsequent diagrams, packages, and their details, it is important to note that
ERP systems vary significantly in their configurations. This report aims to propose solutions that are
applicable to the majority of ERP systems. As a result, certain components commonly found in specific
ERP setups may be excluded to ensure the proposed solution is easier to understand and to keep this
report concise.

3.1.1 High-level Architecture

The high-level architecture of the integration between GNU Taler and ERP can be visualized through
the Business Process Flow Diagram (BPFD) depicted in Figure 1. This diagram outlines the interaction
between the various systems involved in the payment and order reconciliation process, specifically
focusing on the communication between the user, POS, Taler Merchant, Exchange, Bank, and ERP
system. Parts of the existing system is highlighted with black and parts that are painted in blue is what
we are discussing in this report, and what is supposed to be implemented.

arsar) o Consumer
N® -
r) Merchant 3
6
N > 2 =
o 5 7 , IIT <
Exchange Ba;nk

/
4-/8

Figure 1: Business Process Flow Diagram: High-level Overview of Typical Sales Order

Bohdan Potuzhnyi, Vlada Svirsh 22

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Step-by-Step Process Description:

1.

User Withdraws Funds to the Exchange Bank Account:

The process begins with the user withdrawing funds from their personal bank account into the
GNU Taler system. This step ensures the user has sufficient digital funds available to make future
purchases.

Bank Processes the Withdrawal and Sends Confirmation to the Exchange:

After receiving the user’s request, the bank processes the withdrawal and sends a confirmation
to the Taler Exchange. This step ensures that the bank confirms the availability of the funds
before they are transferred into the GNU Taler digital wallet.

User’s Wallet Withdraws the Funds from the Taler Exchange:

Upon confirmation from the bank, the Taler Exchange credits the user’s GNU Taler wallet with
the corresponding funds. These funds are now available for the user to complete transactions
with merchants that accept GNU Taler payments.

User Interacts with the Merchant:

The user initiates a purchase at the merchant’s system. This step involves the selection of
products for purchase and the initiation of the payment process via GNU Taler. The Taler Merchant
backend generates a unique payment link or request for the user, which the user uses to confirm
the payment via the Taler wallet. The Taler Merchant waits for payment confirmation from the
GNU Taler system before continuing with the order processing.

Taler Merchant Communicates with ERP:

Once the payment is confirmed, the Taler Merchant communicates with the ERP system. This
interaction involves notifying ERP of the order’s payment status. The ERP system records the
financial transaction and updates internal processes such as inventory management, order
tracking, and financial accounting.

Taler Merchant Sends the Money to the Exchange:

After processing the payment and interacting with the ERP, the Taler Merchant sends the transac-
tion amount back to the Taler Exchange. This step ensures that the transaction moves forward
from the Taler system to the banking system.

Taler Exchange Sends Money to the Bank:

The Taler Exchange forwards the payment to the bank, facilitating the transfer of funds from the
GNU Taler ecosystem to the traditional banking infrastructure. This ensures that the merchant
receives their payment in a conventional fiat currency.

. Bank Transfers Money to the Merchant’s Account:

Once the payment is processed by the bank, the funds are transferred to the merchant’s bank

Bohdan Potuzhnyi, Vlada Svirsh 23

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

account. This completes the financial transaction, ensuring that the merchant is compensated
for the sale made through the POS system.

9. ERP Receives Payment Information and Reconciles the Order:
Finally, the ERP system receives a notification from the Taler Merchant regarding the successful
payment and reconciles the order. This step ensures that all aspects of the transaction are
reflected in the ERP system, including inventory updates, financial records, and order fulfillment
status.

3.1.2 Infrastructure and Packaging

Starting with the initial infrastructure of the ERP currently in use. We assume that it likely includes a
component responsible for external system connectivity. This component is typically connected to the
internal system via an internal interface, as depicted in Figure 2. If this internal interface is well-defined
as in case of SAP we might want to utilize it, as usually they provide a better performance, otherwise we
have to utilize the external interface of the ERP, if none are present, the possibility of such integration
is highly questionable. Additionally, the ERP infrastructure might include components that facilitate
communication with banks and databases. However, since the connections to these components, as
well as their existence, may differ from one system to another, we will treat them as optional elements
that can vary based on specific ERP configurations.

<<subsystem>> ERP

o—{ Jeo—] oompenent 5 |

[]
_____________ «subsystem»
! Bank
[
«component» E
Internal function — [~
and logic

Figure 2: Component Diagram: Initial Simplified Infrastructure of the ERP

Bohdan Potuzhnyi, Vlada Svirsh 24

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Also, we know how the architecture of Taler looks, as shown in Figure 3. The system is composed of

two main parts.

«subsystem» Taler Merchant

«component» E_C «component»
Taler Merchant LibEuFin Nexus

S]_
;F

T

«subsystem» Payment System Providers
{usually run by authorised parties)

L1 1<)

«component» {I «component»
Taler Exchange Bank Merchant
]
1
C «component»
Bank exchange

Figure 3: Component Diagram: Initial Taler Infrastructure

These two parts are:

1. Payment System Provider:
This part runs externally and could be managed by authorities, financial institutions, or orga-
nizations licensed to issue electronic money. The configuration and controlling parties of this
component depend heavily on the regulations in each specific country or its regions.

« The key module here is the Taler Exchange, which handles the main transaction processes

in the system.
+ The exchange communicates with its Bank exchange to manage interbank transactions

with Bank of merchant.

2. Taler Merchant:
This part is being run and managed by each specific business.

+ The Taler Merchant is the core of this component, handling all merchant-related opera-
tions.

Bohdan Potuzhnyi, Vlada Svirsh 25

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

« Optionally, the Taler Merchant can be configured to include a LibEuFin component, which
enables communication with the merchant’s bank through the EBICS protocol.

This modular architecture ensures flexibility, allowing businesses and financial institutions to configure
Taler’s components according to their specific operational and regulatory requirements.

Asaresult of the creation of the new module, we believe that several new components will appear within
the ERP subsystem. Specifically, we anticipate on the addition of a “Marshall” and an “Integration
Module” components, as shown in Figure 4 the new communications and components are marked in
blue.

The Marshall component acts as the primary communication agent between the Taler subsystem and
the ERP subsystem. It is responsible for managing and storing requests exchanged between the two
platforms. Additionally, it plays a critical role in:

+ Balancing the load on the ERP subsystem, which may require extra time to process transactions.

+ Managing external calls and ensuring resilience during downtime in the Taler subsystem.

+ Accessing the Database (DB) to store necessary information for queuing and efficiently process-
ing requests.

The Integration Module serves as the main logic processor, handling various integration scenarios
described in the following subsections. Positioned internally, this module is assumed to:

+ Have direct access to the Internal Function and Logic component.

+ Access the Database (DB) to store temporary states of requests managed by the Marshall com-
ponent.

+ Handle the requests which have been assigned by the Marshall, and ensure that all transac-
tions align with ERP workflows, including inventory updates, order reconciliation, and financial
reporting.

Bohdan Potuzhnyi, Vlada Svirsh 26

Taler SAP integration: Theoretical Framework and Practical Implementation

2024-2025

«subsystem» ERP

o e o O «component» {I _
Interface
«component» «component» fO\
Marshall Integration module
1
L
«component»
------- Internal function
and logic
«component»
Bank adapter
iy
@ «subsystem» Taler Merchant
I
«component» {I _C «component»

Taler Merchant

LibEuFin Nexus

(usually run by authorised parties)

L H <)

L
]
«subsystem» Payment System Providers |—|—|
r(lf\

«component» «component» & | [
Taler Exchange Bank Merchant
1
1
«component»
Bank exchange

Figure 4: Component Diagram: Proposed Infrastructure of the Integration

Bohdan Potuzhnyi, Vlada Svirsh

27

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

To provide additional context, a package diagram is presented in Figure 5. In the ERP package, ideally,
only one new package — the Integration package — is introduced to interact with the existing system.
Integration package will facilitate communication between the old packaging and the Taler system.

The Taler system, in turn, introduces its own package Taler Merchant package, which handles
merchant-specific logic and single-page administration application (SPAA).

The Taler Merchant will interact with the integration package in the ERP system, which contains
the communication module named Marshall and the Integration module with necessary logic for
integrating with the existing ERP subsystems and workflows.

This modular approach ensures that the integration remains scalable and maintainable, minimizing
disruption to existing systems while enabling the addition of GNU Taler functionalities.

ERP+Taler

Taler Merchant

Merchant logic & SPAA

«access»

ERP
\ 4
Integration Existing ERP
package system
Marshall & Integration Previous subsystem &
- -«access»- P
module workflow

Figure 5: Package diagram: ERP and Taler Integration

3.1.3 Centric Integration Design

The integration of GNU Taler with ERP systems introduces the need for new communication pathways,
making it essential to establish how bidirectional synchronization will occur. Referring to Figure 4,

Bohdan Potuzhnyi, Vlada Svirsh 28

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

a key question arises: how should data flow between the systems, and which system should act
as the primary authority for maintaining consistency? To address these questions, the concept of
centric integration is introduced, emphasizing two distinct approaches: Taler-Centric Integration
and ERP-Centric Integration.

These approaches define how the integration should be structured, where the focus lies, and how
synchronization responsibilities are distributed.

1. Taler-Centric Integration This approach is suited for businesses that are either starting from
scratch or already use a Taler system and wish to easily migrate the data to ERP with more tools.
In this model:

+ The Taler Merchant Backend acts as the primary source of truth, managing all business
data, including orders, inventory, and consumer interactions.

+ The ERP system is integrated mainly for financial reporting, tax compliance, and other
processes dependent on data from GNU Taler.

« This configuration is ideal for businesses that prefer to handle the majority of operational
processes on GNU Taler while relying on the ERP system for financial and reporting tasks.

2. ERP-Centric Integration This approach is ideal for businesses that already have an ERP system
(such as SAP or Dolibarr) in place and want to integrate GNU Taler as a payment method. In this
model:

» The ERP system remains the primary source of truth for business data, such as orders,
inventory, and consumer information.

+ The ERP system interacts with the Taler Merchant Backend for payment processing and
related functionalities.

« This setup ensures that the core business processes are maintained within the ERP system,
while GNU Taler adds new payment method, enhancing the overall user experience.

By categorizing the processes into these two groups, developers can more easily define the appropri-
ate strategy and logic for integration. This approach provides businesses with diverse possibilities,
especially when developers implement all available options, enabling flexibility in choosing the inte-
gration model that best aligns with their operational needs — whether they prefer their ERP system
as the backbone of operations or want to leverage the capabilities of the Taler Merchant Backend for
managing transactions and business data.

Itis also important to note that some business processes remain consistent across both approaches.
So far the only such process is the payment reconciliation process will follow the same workflow,
ensuring a standardized approach to this operation.

Bohdan Potuzhnyi, Vlada Svirsh 29

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.2 Taler-Centric Integration
3.2.1 High-level Data Flow

In this approach, the GNU Taler Merchant Backend is used as the source of truth for most business
data. This includes:

1. Order Information: Managing the creation and modification of orders.

2. Inventory Updates: Handling changes to inventory data and reflecting stock availability.

3. Order and Payment Statuses: Tracking updates to orders and payment statuses from the Taler
payment system.

However, reconciliation of payments is initiated by the ERP system. The results of this reconciliation are
then communicated back to the GNU Taler Merchant Backend through updates to the order status.

‘/' - '\‘
<——O0rder creation/modification <«——Order creation/modification
<«———Inventory updates———— I . <«——Inventory updates Taler
ntegration
ERP g t Merchant
«——Payment/Order status componen <«—Payment/Order status: Backend
Reconciliation: > Reconciliation——— >

J N %

Figure 6: Data Flow Diagram: High-level Communication of Taler as Source of Truth and ERP

3.2.2 Inventory Management Process

We expect that no order can be created without having the necessary goods in inventory, even with the
fact that Taler allows such behaviour. Therefore, the first step is to transfer the inventory data into the
ERP system. To facilitate this, the inventory management process was created. The BPMN diagram
illustrating this process is shown in Figure 7.

This process isinitiated by a timer, which must be configured by the system administrator. It is designed
to retrieve and save the two main components of the inventory: categories and products. As a result,
the process consists of two primary sub-processes:

1. Update Categories
2. Update Products

This process is fully automated and designed to run without requiring any manual input.

Bohdan Potuzhnyi, Vlada Svirsh 30

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Taler Merchant backend
O) O)
hd A hd A
[! ot
T f T f
| ! .
3 .)
o |5 AV V A
18
> |5
<ZE <] Start Update
% .5 processing categories products
© -_—
8 ;'; Start once per = End of the update
k=4 X time unit
=
~ (configurable) [E]

Figure 7: BPMN: Inventory Management Process from Taler

As shown in the diagram, the process includes the sub-process Update Categories, which is illustrated
in Figure 8. This sub-process retrieves the categories from the Taler Merchant Backend and updates
them in the ERP system.

Taler Merchant backend

O)
A hd
' [
i |
' [
! [
~ ¥ Any diff ?
) ierences?
] = g
Reql_ie_st for Receive the (?heck for any
existing differences with

response

categories local categories

COMPANY ERP
Integrration component

Cover the
differences of
categories in

the ERP

Figure 8: BPMN Sub-process: Update Categories from Taler

Another sub-process shown in Figure 7 is Update Products which is shown in Figure 9, which is
responsible for preparing the inventory data required for creating orders. Accuracy in the update/delete
path stands for checking that the information stored in the ERP is the same as received from the Taler,
itis important to check in cases, where modifications on Taler side were made in situations such as
non-standard sales/refund processes (e.g. products are missing, stolen products, out of term of validity
etc.), in such cases updates of these products needs to be additionally handled by personal, to insure
correct status of product movements.

Bohdan Potuzhnyi, Vlada Svirsh 31

2024-2025

Taler SAP integration: Theoretical Framework and Practical Implementation

Taler Merchant backend

COMPANY ERP

Integration component

0
|
|
|
|
|
|
| _

What is the
I _M_mmm_‘mzom type?
| 8
|
|

?
|

_

_

_

_

_

_

!

_

_

!

A

v

Process batch
of [size] from
[id]

N\

xgcmﬂ for the &
inventory from Receive Check for

|

~

[id] with size response ¥l differences
[size]

no difference

update

delete

(~)
Accurate? ﬁmD
no Update the item
manually
~——
yes
e N\ ™
Check for Update

accuracy of the

automatically

product

accuracy of the

J

product
. J \ J
)
Add product
—
e N\ A
Check for Delete

automatically

Accurate?

~)
Dmu Delete the

product
manually

—o

BPMN Sub-process: Update Products from Taler

Figure9

32

Bohdan Potuzhnyi, Vlada Svirsh

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the inventory management process, illustrated in Figure 10, outlines
the interaction flow between the Taler Merchant Backend and the ERP system. This process ensures
synchronization of categories and products in the inventory across both systems. Key steps:

1. Category Updates:

+ The ERP system sends a request to the Taler Merchant Backend to retrieve updated category
information.

» The Taler Merchant Backend responds with the latest category data.

+ The ERP system verifies if there are any new categories or updates.

« If updates are identified, the ERP system synchronizes the new categories; otherwise, no
changes are made.

2. Item Updates:

« After category updates, the ERP system requests item details from the Taler Merchant
Backend.

» The Taler Merchant Backend sends item data to the ERP system.

« The ERP system validates the accuracy of the received data and updates the inventory
accordingly.

3. Final Validation:

+ Both categories and products are verified for completeness and accuracy.
+ Any discrepancies trigger alerts or logs for manual intervention.

This process ensures that the ERP system and Taler Merchant Backend maintain a consistent view of
inventory, enabling smooth business operations.

Bohdan Potuzhnyi, Vlada Svirsh 33

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

: Start processing

Administrator
]

Update Categories /

| Request for existing categories
|

| Response with categories

A

| Check for new categories

|

Any new categories? /
' Add categories to the ERP

i

Updated successfully? /
| Categories updated successfully

| Drop notification
[

[No new categories]!

No changes required %

I
|
|
|
I
I
|
|
_____________________________ e e
I
I
|
|
L

Update Items /

' Process batch of [size] from [id]

} Request for the inventory from [id] with size [size]

Receive response

A

Check for accuracy of item

I

]
I
I
I
I
1
I
I
>!
>,
1
|
I
I
I
1
I

Accurate? P

No changes needed

Update the item

I

Drop notification

Y

rocessing finished
|

Integration Component ERP

i

—— e 4 - - ___}

I
Taler Merchant Backend Administrator

Figure 10: Sequence Diagram: Inventory Management Process from Taler

Bohdan Potuzhnyi, Vlada Svirsh

34

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.2.3 Sales Process with Transfer After Order is Created

This process involves transferring the order details immediately after the order is created, even before
payment is received. The BPMN diagram in Figure 11 illustrates the proposed integration.

This process is requiring additional round of communication comparing to transferring after payment
is received, which makes it more complex to implement. Developers opting for this approach will
need to handle potential compensation events if the payment is not completed after the order has
been created. Therefore, for a simpler initial implementation, it is recommended to consider the Sales
Process with Transfer After Order is Paid, which is described in the following section 3.2.4.

Key steps in this process include:

1. Order Creation and Transfer:
The order details are transferred to the ERP system as soon as the order is created. During this
time, the system waits for payment to be confirmed. If the payment is not received within the
specified timeframe, the process is terminated, and compensation logic is triggered.

2. Compensation Events:
If payment fails or is not completed, the system initiates compensation events to handle the
incomplete order. These events could include canceling the order or notifying the relevant
stakeholders for manual intervention.

This process provides more immediate visibility into the order details within the ERP system but comes
with additional challenges in terms of handling incomplete transactions.

Bohdan Potuzhnyi, Vlada Svirsh 35

2024-2025

Taler SAP integration: Theoretical Framework and Practical Implementation

PoS/Website

Send error
description

A
_
[
[
[
[
[

Payment failed

°
o
g
3 O
x| 2 Create order Collect
Wl E and initiate
J| 8 goods payment
.M 4] ord ieved m_ Send creation P O
m rder recieve token Payment
= | successful s dat
ko) N ave updates
I . | . Update of status from
| inventory
: _
! |
! JE—
|
Information about Y KT Y St
the order - - - - == Illllllllll_ llllllllllllllllllllllllllll o _
|
(== = = = = = = = = — — | 1 L= = = — — — — — | |
| _N_ m:nnmmmr:_E
\V savi
wm.mm Wmhw_ n 4 Vﬂ Check 4 Start sales Post goods Receive aomn_F_._ﬁM:. Payment
t inventory order creation issue payment info N posting
lemporary DB creation
¢ ® 5@ @ @
g & 4 & Check the & p (&
£ B Time till order status
o must be paid
c
o
Z|T
w | o
o
z |z
g)
= Cancel goods
m movement,
close order
<«
= A A 4 A A
2
2 3) B Y
2 Manual creation Manual goods Manual billing
= N N payment
£ of the order issue doc. creation .
5 posting
<

Figure 11: BPMN: Sales Process from Taler on Order Being Created

36

Bohdan Potuzhnyi, Vlada Svirsh

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the sales process from Taler on order being created is presented first in
Figure 12 and Figure 13. This process outlines the interaction flow when the order is created in the
system before payment is confirmed. Key highlights of this sequence include:

1. Order Initialization:

« The consumer initiates an order through the Point-of-Sale (PoS) or website.
« The Taler Merchant Backend receives the order and processes the initial steps.

2. Inventory Check:

« The system validates that all goods in the order are available in the inventory.
+ If some products are missing, a placeholder product is created for these products, or an
update is triggered for inventory addition.

3. Order Creation:

The validated order is officially created in the ERP system.

+ Goods Issue: The system ensures the products are marked for delivery or consumption.

+ Billing Document Creation: The financial document detailing the transaction is prepared.
« Payment Posting: Although the order has been created, payment reconciliation remains
pending.

4. ERP System Update:

« The ERP system logs the order details and updates internal inventory and accounting
records.

This process is ideal for businesses that prioritize early visibility into the ERP system, even before
payment is finalized. However, additional compensation logic may be required in case payment is not
completed within the stipulated time.

Bohdan Potuzhnyi, Vlada Svirsh 37

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

')
): TALER SYSTEM COMPANY ERP
Consur:wer PoS/Websnte (TALER Merchant Backend) Taler Exchange (Integration Component)

Admini§tratcr

| Order ! 3 |
.—>
| Order received |

I
I
I
I
!

| | Create order and initiate goods |

| 1 |

I i I

' _ Send creation token ! !

€

i I

Provide payment details ! : |

e EEEE— | |

. .
Saving processin i
I

I

|

I

I

I

I

I

I

I

| Information on the order

Save data in the local Taler table(DB)

Data saved in the local temporary DB

200 !
[Savingerror] | i i
| error code | 1
i i i
| |_Check all goods in inventory /
I
i ‘ same logic to Create Order on Payment Diagram H
I
I
Create Order /J
| Start sales order creation
|
| _ Confirm sales order creation
[Order creation fa‘iled]
]

1 _ Order creation failed

Manual creation of the order with ID

Listen for the order created with ID

Goods Issue /J
| Post Goods Issue

same logic to Create Order %

I
| Continuation is on the next page ,
I I |

Consumer PoS/Website TALER SYSTEM Taler Exchange COMPANY ERP ERPDB Administrator
b (TALER Merchant Backend) (Integration Component) g Q
j;

Figure 12: Sequence Diagram: Sales Process from Taler on Order Being Created Part 1

Bohdan Potuzhnyi, Vlada Svirsh 38

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

e ~

®
TALER SYSTEM COMPANY ERP - N
Consumer PoS/WebS|te (TALER Merchant Backend) W Taler Exchange (Integration Component) ERP‘ DB Admini§trator
\ \ \ I I I
. | | ‘ Start is on the prewous page . | .
I I ! I I I
| Payment 1) 1 | | |
I | | | I I I
| | | Collect payment | . | .
I I I I I I I
Payment successful / | | 0 | 1
| |_ Provide confirmation | | | | |
I V<—\ I I I I
| Provide goods | | | | | |
\%\ I I I I I
		Update inventory			
) 1					
		Information on the orderlPayment			
I I I T 1 I I					
I I	I L I I				
! ! ! ! Billing Doc Creation / ! !					
:	!	' Billing Document Creation	.		
))	i				
I I I I I I					
! ! ! ! ‘ same logic to Create Orderb[! !					
I I ! I T I I					
I I I L I I					
! ! 3 ! Payment Posting / ! !					
! ! ! ! ' Payment Posting ! !					
)				
			I I		
! ! ! ! l same logic to Create Order% ! !					
I I I I T I I					
				Successfully saved	.
)	‘			
		Confirm full saving			
i I ! T !] I					
[Paym#nt failed and time e&pired] : : : : :					
! ' Payment failed !	! ! !				
I ! \ I I I I					
! ! ! ! ! Initiate compensation process	!				
1 1 1 1					
		_ Compensation initiated,		.	
	i				
! ! ! ! ' Cancel(return) goods movement ! !					
I I	I I I				
			p—		
				Cancel(close) order creation } !	
	1	1			
				Mark order as failed payment J	
1]] 1 1 =					
	o				
Consumer JIWEEIS TALER SYSTEM Taler Exchange COMPANY ERP ERPDB Administrator
L (TALER Merchant Backend) (Integration Component) a N

Figure 13: Sequence Diagram: Sales Process from Taler on Order Being Created Part 2

Bohdan Potuzhnyi, Vlada Svirsh 39

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.2.4 Sales Process with Transfer After Order is Paid

This process is simpler and involves transferring the order details only after payment has been con-
firmed. In comparison to the previous process this one does not require additional confirmation
or cancellation from the GNU Taler Merchant backend system on the matter of the payment status,
skipping some compensation and handling logic, making it easier to implement, especially for the first
iteration of the integration.

The BPMN diagram in Figure 14 illustrates the integration of the GNU Taler Merchant Backend with
the company’s ERP system and highlights the steps involved:

1. Order Creation and Payment Collection:
Once an order is received, the Taler Merchant Backend creates the order and begins goods
handling. During this step, the sub-process Create Order and Initiate Goods Issue is executed,
as shown in Figure 15. The system then waits for payment confirmation with long polling, and
waiting up to the payment deadline (this options is not locked and is configurable for each order).
Once payment is received, the process proceeds with order approval.

2. Confirmation and Approval:
After payment is confirmed, the backend confirms the order’s processing. It then sends info
about transaction to the ERP.

3. Order Handling in the ERP System:
The ERP system performs the following backend operations:

« Data Saving: Saves the order in a temporary database.

+ Inventory Check: Verifies stock availability.

« Sales Order Creation: Initiates the sales order (may require manual input).

+ Goods Issue: Posts goods (may require manual input).

+ Billing Document Creation: Generates a billing document (may require manual input).
« Payment Posting: Posts the payment in the ERP system (may require manual input).

Once these steps are completed, the order is successfully saved, and the notification is sent to the Taler
Merchant Backend.

Sub-Processes:

+ Create Order and Initiate Goods Issue:
This sub-process verifies the correctness of the order and checks for goods availability. It is
illustrated in Figure 15.

- Check Order: Ensures the order is valid for the merchant.
- Check Inventory: Confirms goods are available in stock.

Bohdan Potuzhnyi, Vlada Svirsh 40

2024-2025

Taler SAP integration: Theoretical Framework and Practical Implementation

Save updates
of status from

PoS/Website
)
hd A A » A
| L I _ L
_ ! |
_ _ |
_ | Payment failed |
Senderror | Wait ti
m “ @ description | al ::@ “
S o &
x| 2 Create order c _
= s ollect
u © and initiate I
< |6 goods payment b .
Ll) Send creation aymen
m Order recieved E token O mcoommmE__
ko
©

Update stock

Information about |

COMPANY ERP

the order | e
| | |
A A A - T — - —
< \ % N \J N\ U N\ \
@ . -
5 Save data in Vﬁ Check ; Vﬁ Start sales Vﬁ Post goods Vﬁ Billing N Payment
Q. the local > . > : > X > document > .
£ inventory order creation issue A posting
8 temporary DB creation
g e O O O Ssccoschl
= Y 4 uccessfully
g B | & S S saved
(4]
[

Administrator

S

Manual creation
of the order

Manual goods
issue

doc. creation

Dmlw_u mw_m::m_ billing ‘g Dmlw_u

Manual
payment
posting

Figure 14: BPMN: Sales Process from Taler on Order Being Paid

41

Bohdan Potuzhnyi, Vlada Svirsh

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Throw error (404) Out of stock

Unsupported Progucts Throw error (410)
available?

Check payment Check Missing products
method inventory

Throw error(404)

Products available

Stock

reservation

Figure 15: BPMN Sub-process: Create Order and Initiate Goods Issue

+ Inventory Preparation for Order:
This sub-process, shown in Figure 16, ensures that the inventory is ready for the order. Steps
include:

1. Checking for products being in stock.
2. If unavailable, attempting to retrieve products from the Taler Merchant Backend.
3. If still unavailable, initiating a placeholder item for order creation.

All goods in
stock?

Check all goods yes
is in inventory

Status?

Request to add
product to the
inventory

Proof inventory

not good

Add item to Create one-

inventory by id time product

=+

Figure 16: BPMN Sub-process: Check Inventory for Order Creation from Taler

This approach is well-suited for developers looking for a straightforward integration method with
minimal complexity.

Bohdan Potuzhnyi, Vlada Svirsh 42

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the sales process from Taler on order being paid is shown in Figure 17,
Figure 18 and Figure 19. This process is more asynchronous, where order details are only synchronized
after payment has been successfully processed. Key highlights include:

1. Payment Confirmation:

+ The consumer completes the payment through the Taler Wallet.
+ The Taler Exchange confirms the successful payment and notifies the Merchant Backend.

2. ERP Integration:

+ The Taler Merchant Backend initiates communication with the ERP system to create and
finalize the order.

3. Order Creation:

+ The ERP system processes the order creation, ensuring inventory alignment and financial
consistency.

« Goods Issue: Products are marked for delivery or consumption within the ERP system.

+ Billing Document Creation: The ERP system generates a billing document for financial
records.

« Payment Posting: The payment is logged in the ERP system, completing the reconciliation.

4. Completion:

+ The ERP system finalizes the order, updates inventory, and reconciles the payment status,
ensuring accurate records across all systems.

This process is simpler to implement and eliminates the need for compensation logic, as payment is
already confirmed before order synchronization. For readability reasons, this diagram was divided
into 2 parts. Consult next 2 pages to get the full picture.

Bohdan Potuzhnyi, Vlada Svirsh 43

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

)
-+ - X
A TALER SYSTEM COMPANY ERP '
\ A .
Consymer PoS/ebS|te (TALER Mercant Backend) Taler Echange (Integration Component) ERPDB Administrator
| Order

Order received

| | Create order and initiate goods
| 1
i I
' _ Send creation token
-~

Provide payment details |

\
— :
I ! !
1 Payment | | R
: | | Collect payment
! | ! (Long polling every 5 mins,
| . | max 24 hours)
I ! !
I ! ‘

Payment successful ! !
! I

Provide confirmation

Provide goods
-«

Update inventory

Saving processing /

| Information on the order
h

Save data in the local Taler table(DB)

Data saved in the local temporary DB

|
|

]

|

|

|

i

I

|

i

!

- i
[Saving error] !
|

I

i
i
|
|
|
| 200
i
i
|
|

error code

Check all goods in inventory /J

More detailed description of this
sub-process is on the next diagram

i i i i i i i
| 1 | | ‘ Continuation on the next figure% ! !
| 1 1 | T ! 1

[Payment faled] i
| | Payment failed

i
|
|
|
‘ ‘ ‘ ‘ .
Con?})@er PoS/Website TALER SYSTEM Taler Exchange COMPANY ERP ERP DB Admln/l;\Frator
hd (TALER Merchant Backend) (Integration Component) .l I i

/N

Figure 17: Sequence Diagram: Sales Process from Taler on Order Being Paid Part 1

Bohdan Potuzhnyi, Vlada Svirsh 44

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

O @)

i TALER SYSTEM COMPANY ERP - i
Consymer PoS/ebSIte (TALER Mercant FECChEN REIES Echange (Integrat|onComponent) ERP DB Admini§trator

i i i i i i i
| | | | Start of this diagram | !
| . ! ! is on the previous figure ! !

| | |

i \ i i i ; \
! ' |_Check all goods in inventory / ! ! } !
		.	Check if all goods are in stock	
1		i		
	L 4 4 L			
! ! All goods are in stock / ! ! ! !				
! ! 1 Confirm inventory ! ! ! !				
I I I	I I			
! 3 ! ! 1 Inventory confirmed ! !				
			[Not ali goods are in stock] i i i	
	Request to add product to the inventory / i I			
) 1 L Request inventory addition : 1				
	< T]			
		Inventory request information		
I I I T) I I				
				Inventory request saved \1
1	1 1 i 1			
			Add item to inventory /	
				Add item to inventory by ID
I I I I T I I				
1 L L L L				
! ! Inventory status check / ! ! ! !				
! ! ! ! ' Verify inventory status				
			i	
	Status is good / i I			
		Inventory confirmed		
I I [T 1 I I				
: : [Status is not good]: : : : :				
	Create one-time product / i k i			
I I I I 1 . . I I				
I I I	, Assign one-time product			
1		'		
				One-time product assigned
I I I I T > I				
	L Used one-time product			
: : : : :				
I I I
I I Il Il 1 I

i i i
| . ‘ Continuation on the next ﬁgure%
| ! T

L
I
I
| ! !
i i i i i i
Consumer EIETS TALER SYSTEM Taler Exchange COMPANY ERP ERE DB Adm'”"%”“"'
i (TALER Merchant Backend) (Integration Component) a \X

Figure 18: Sequence Diagram: Sales Process from Taler on Order Being Paid Part 1.5

Bohdan Potuzhnyi, Vlada Svirsh 45

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

(Long polling every 5 mins,
max 24 hours)

O O
O D
A TALER SYSTEM COMPANY ERP ' I
Consgmer PoS/eb5|te (TALER Mercant Backend) Taler Echange (Integration Component) ERP‘ DB Admini§trator

| Order : | | | | |

—_——> I I I i I

| | Order received | | | 1 |

I I I I I

| | | Create order and initiate goods | | | |

| i 1 | | i |

I I I I I I I

! ' Send creation token ! ! ! ' !

3 Provide payment details 3 3 3 3 3

—

Payment : | | 1 |

\ | | |

i I I I

I I I I

I I I I

I I I I

] i i I

I I L I

]] i]

‘
‘
‘
| |
| | | Collect payment
| | l
| |

Payment successful J

i i i
i i First part is on the previous figure %
! 1 T

i i
Create Order !

| | Start sales order creation

I

I

I

|

Confirm sales order creation

)
[Order creation faFIed]
' _ Order creation failed

I
1 Manual creation of the order with ID

| Listen for the order created with ID |
I

|
Goods Issue _/
| Post Goods Issue

same logic to Create Orderb|

Billing Document Creation /
' Billing Document Creation

‘ same logic to Create Orderh|

Payment Posting J
| Payment Posting

same logic to Create OrderH

| Successfully saved

Confirm full saving

]
[Paymen!; failed]
' Payment failed

e ———]
Consumer PoS/Website TALER SYSTEM Taler Exchange COMPANY ERP ERP DB Admin(i,S}rator
hd (TALER Merchant Backend) (Integration Component) .| | X

/N

Figure 19: Sequence Diagram: Sales Process from Taler on Order Being Paid Part 2

Bohdan Potuzhnyi, Vlada Svirsh 46

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.2.5 Refund Process

The refund process is a critical aspect of integrating GNU Taler with the ERP system. The BPMN diagram
illustrating this process is presented in Figure 20. The process begins with a refund request from
administrator through the user interface, which is afterward managed by the Taler Merchant Backend.
Once the Taler Merchant Backend confirms the refund, the process is transferred to the ERP system for
further handling.

The steps involved in this process are as follows:
1. Save Data in the Local Database:

The refund request is recorded in a temporary local database to ensure traceability and consis-
tency.

2. Locate the Order in the ERP System:
The system verifies that the order associated with the refund exists within the ERP system.

3. Initiate Return Order Creation:
Areturn order is created to manage the refund workflow.

4. Create Billing Document for the Refund:
A billing document is generated to document the financial aspects of the refund.

5. Post the Payment Document to the Refund Order:
The payment document is finalized and posted to the refund order, completing the process.

While these steps may vary depending on the specific ERP system being used, they generally encompass
the essential actions required for handling refunds effectively.

Bohdan Potuzhnyi, Vlada Svirsh 47

2024-2025

Taler SAP integration: Theoretical Framework and Practical Implementation

PoS/Website
)
hd Aw D
! _
_ _
g | _
5
3 _ Send error |
. | description _
x | =
wil g [
2|2 !
18
m Check rules for Save updates
[} of status from
= refund
T
Refund ived Send refund
efund receive terms
|||||||| N | — —
_ - J
Refunrd *) == === = == - - - b
information | - - - - - - ______"y - - - -~ |
|
m O ~ Successfully
5) . saved
3 Save data in Start return Billing Payment
5 the local : document .
8 order creation . posting
c temporary DB creation
Kel
. | S ®
x| &
w e
> | £
2
[
=
8
5 A 4 A 4) 4 A 4
: 2 S 3)
® M - nual creation - Manual
‘z anual finding Manual billing
£ of the return . payment
£ of the order doc. creation .
M order posting

BPMN: Refund Process from Taler

Figure 20

48

Bohdan Potuzhnyi, Vlada Svirsh

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the refund process from Taler, shown in Figure 21, outlines the key
interactions between the Taler system and the ERP system during a refund. This process ensures
accurate synchronization and traceability across platforms. Key steps:

1. Refund Validation:

+ The user initiates a refund request via the Taler system (e.g., PoS or website).
+ The Taler Merchant Backend verifies if the refund is allowed and confirms its eligibility.

2. Data Storage:

+ The refund request is saved in the Taler Merchant Backend’s database for traceability and
audit purposes.

3. Refund Processing:

« The Taler Merchant Backend communicates with the ERP system to initiate the refund
process by creating a return order.

4. Return Billing Document:

+ The ERP system generates a return billing document to record the refund transaction.
5. Return Payment Posting:

+ The ERP system posts the payment for the refund, completing the financial reconciliation.
6. Completion:

« Both the Taler system and the ERP system update their records, and the consumer is notified
of the successful refund.

This streamlined process ensures accurate and efficient refunds across the Taler and ERP systems.

Bohdan Potuzhnyi, Vlada Svirsh 49

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025
e 0

TALER SYSTEM COMPANY ERP
Consx‘Jmer PoS/eb5|te (TALER Mercant Backend) [l Taler Echange (Integration Component)

| Refund Request '
|
| Order received

Check rules for refund

Admini§trator

ERP‘ DB
i
I
|
|
I
l
|
l
|
|
i
T
|
|
|
I
|
|
l
T
l
|
I
I
|
|
I
|
i
i

|
| | | | |
CO”?,U\mer PoS/Website TALER SYSTEM Taler Exchange COMPANY ERP
\I) (TALER Merchant Backend) (Integration Component)

Figure 21: Sequence Diagram: Refund Process from Taler

|
!
i
‘ .
Refund allowed / |
| i SaveData / | |
I i | | I
I ' 1 Information on the refund '
I i " : 1
| | | | | Save data in the local temporary DB
| i 1 1 1
I !
I I Process Refund _/ I | i
I i I I I
| | 1 | 1 Find order i
| i | | 1 |
I i I I i I
! ! ! ! | Start return order creation !
| : | | | |
| | Return order created /J I | I I
| : | | | Return order found | |
I i I I r] I
| | | Confirm return order | | | |
I i) T 1] |
: : [Return order cre?tion failed] : : : :
! ! ! ! ' Manual search of the order ! !
I i I I I i I
! ! ! ! ! Wait for the refund order being find ! !
I ! I I \ I I
| 1 ‘ ‘ ‘ ‘ ‘
I | . . . ! L
! ! Return Billing Document Creation /J ! ! ! !
! ! ! ! | Create Return Billing Document ! !
i 1	i		
	Return Billing document created /	i	
'			Return billing document created :
I i I I r] I			
		Confirm billing document	
I i) T 1 '			
! ! [Billing document creation failed] i ! ! i			
! ! ! ! ' Manual billing doc. creation ! !			
I i I I I i			
! ! ! ! ! Wait for the ret. bil. doc. being created ! !			
I i I I L I I			
i : :			
I ! I I . I I			
! ! ! ! Return Payment Posting / ! !			
!	! !	_Post payment ! !	
I ! I I	I I		
I i I I) I I			
I i I I I I			
! ' ! ! Same logic as Ret. Bil. Doc. Creation% ! !			
I i I I T I I			
i		1	
I i I I r] I			
		Notify refund completidn	
i i v T] i i
[Refunq denied] ‘(: : : : :
! ' Send error description ' ! i ! !
B e
I i | I I I I
! Notify refund denied ! ! ! ! ! !
e ——
I
ERP DB

]
Administrator
)
)

X

Bohdan Potuzhnyi, Vlada Svirsh

50

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.3 ERP-Centric Integration
3.3.1 High-level Data Flow

In this approach, the ERP system is the source of truth for the majority of the business data, except for
transactions data (which includes updates for the order/payment status) received from the GNU
Taler Merchant Backend via API responses and the webhook service.

The ERP could provide inventory information to Taler to display products on receipts issued to
consumers through the Taler payment system.

To process payments within the Taler system, the ERP must handle the order creation in the GNU Taler
Merchant Backend. Additionally, all modifications to orders and the initiation of refund processes are
expected to also originate from the ERP.

Similar to the Taler-Centric Integration, reconciliation of bank transfers requires the ERP to first provide
the bank transfer data to GNU Taler merchant backend. Subsequently, transaction data is managed on
ERP, with requests coming from the GNU Taler merchant backend’s webhook system.

Order creation/modification—> Order creation/modification—>

———lInventory updates————> Taler
Merchant
Backend

Inventory updates—>/ Integration

ERP
component <«—Payment/Order status:

«——Payment/Order status:

Reconciliation———>

Y

Reconciliation

Figure 22: Data Flow Diagram: High-level Communication of Taler and ERP as Source of Truth

3.3.2 Inventory Management Process

The inventory management process is simpler compared to inventory-related processes in Taler. This
is because its only job is to provide the inventory data needed for order receipts that consumers see in
their wallets. So, there’s no need to worry about constantly updating stock information.

Also, it might be a good idea to add a specific tag or category to mark products as “Taler related.” That
way, only the products marked for Taler get added to the Taler Merchant Backend inventory.

The sequence diagram for the inventory management process the ERP system, as illustrated in
Figure 24, outlines the steps involved in updating inventory data from the ERP system to the Taler
Merchant Backend. This process ensures synchronization of inventory information, enabling consistent
and accurate data flow between systems. The key steps in this process include:

Bohdan Potuzhnyi, Vlada Svirsh 51

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Taler Merchant backend

[P hd

I
Updat? inventory

Receive
response

=
Add/Update/
Remove each

product on Taler

Process batch
of [size] from
ERP for Taler

Start
processing

Figure 23: BPMN: Inventory Management Process from ERP System

COMPANY ERP
Integration component

1. Batch Processing Initialization:

+ The ERP system (Integration component) begins the inventory update process and prepares
a batch of products to be synchronized with the Taler Merchant Backend.

2. Batch Processing:

+ The batch is sent from the ERP system to the Taler Merchant Backend, specifying the size of
the batch for processing.

3. Iterative Item Update:

+ For each item in the batch:
- The ERP system sends the item to the Taler Merchant Backend for addition or update.
- The Taler Merchant Backend responds with the result of the update.
4. Error Handling:

+ If the response from the Taler Merchant Backend contains errors:
- The ERP system saves the errors for review or further action.
« If the response is successful:

- The ERP system marks the item as successfully processed.
5. Completion:

« Once all products in the batch are processed, the ERP system concludes the inventory
update process and logs the outcome.

This process ensures that the inventory data in the ERP system remains consistent with the Taler
Merchant Backend, allowing for accurate order fulfillment and inventory tracking. The iterative error
handling mechanism allows for seamless recovery and resolution of issues during synchronization.

Bohdan Potuzhnyi, Vlada Svirsh 52

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Integration Component ERP Taler Merchant Backend

I Start processing

Process Batch /J

I
1
I
I
I
:
| Process batch of [size] from ERP for Taler |
1
I
L
I
1
I
I
1

1
loop / [For éach item in the batch]

| Add each item to Taler

>
>

\ Receiveresponse |
I
Response contains errors /

| Save errors

1

Mark item as processed

b

Processing complete

Integration Component ERP Taler Merchant Backend

Figure 24: Sequence Diagram: Inventory Management Process from ERP System

|U

3.3.3 Sales Process

The sales process is simpler compared to the sales processes where the Taler Merchant Backend acts
as the source of truth. This approach may hold more significance for companies using their ERP system
as the primary operational backbone while adding GNU Taler as a payment solution.

The BPMN diagram in Figure 25 illustrates the steps involved in processing an order within the ERP
system. In this setup:

+ The ERP system remains the primary manager of order creation, inventory updates, and financial
workflows.
« GNU Taler is integrated solely for handling payment processing and synchronization.

This configuration allows businesses to maintain consistency in their existing workflows while seam-
lessly adding GNU Taler for enhanced payment capabilities.

Bohdan Potuzhnyi, Vlada Svirsh 53

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

[~ =
Create order Send payment Listen for order Send info to
link being paid the ERP
A
I

O)
hd hd
I I
[I
| [

I
I
I
I
I

TALER
Taler Merchant backend

I
|

= [~ @g;

s Send order ave the order

[Z . .

5 creation link to

= request integration DB
A

(%} pdate the

payment
information in
ERP

Wait for
payment to be
received

©

Process order
info

[~}
Send info to
user

o1

COMPANY ERP
Integration component

Payment
posting

—

|
5 |
(e}
- G})
5 reate order | -
k7] with Taler Finish order
£ a " | (provide goods)
£ paymen
< |
, |
orderinfo: payment link l_ - - =
T T
-~

payment
Receive [&

Place order payment Pay order
instructions

Consumer

Figure 25: BPMN: Sales Process from ERP System

Bohdan Potuzhnyi, Vlada Svirsh 54

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the sales process from the ERP system, illustrated in Figure 26, outlines
the detailed workflow of order and payment management when initiated from the ERP system. This
process ensures seamless coordination between the ERP system and the Taler Merchant Backend for
handling sales and payments. Key steps:

1. Sales Process in ERP:

« The consumer initiates a sales order in the ERP system via the administrator or directly
through an integrated platform.

« The ERP system (Integration component) processes the sales order, verifying product
availability and consumer details.

« Once validated, the ERP system forwards the sales order information to the Taler Merchant
Backend.

2. Payment Processing in Taler Merchant Backend:

+ The Taler Merchant Backend receives the sales order and begins the payment process.

+ The system generates a payment link or request for the consumer via the Taler Wallet.

+ The consumer completes the payment using the Taler Wallet, and the Taler Merchant
Backend confirms the payment success.

3. Payment Information Handling:

+ The Taler Merchant Backend communicates payment confirmation back to the ERP system.
+ The ERP system logs the payment information, updates the financial records, and marks
the sales order as completed.

4. Completion:

« The ERP system finalizes the sales process, ensuring that inventory and accounting records
are synchronized.
« Administrators or users are notified of the successful order and payment completion.

Bohdan Potuzhnyi, Vlada Svirsh 55

Taler SAP integration: Theoretical Framework and Practical Implementation

2024-2025

O

N

X

Custgmer Admini§trator

Order

>
>

Create order

Set payment as Taler

Integration component ERP Taler Merchant Backend

|
|
|
|
|
|
> !
>

_ Send info to the ERP

Listen for payment paid

I | |
I | |
I 1 |
I I I
I I I
I I I
) 1 |
| | Sales Process in Integration Component /|
| | | Create order |
| l j
I I I I
! ! 1 Payment request !
I I T

Payment Process in Taler Merchant Backend / !
! ! ! Create order
I I I
I I I
. } } Create payment link
| | |
I | | .

Send payment link

! ! PR s AL S—
: . Send paymentlink
I I
l<_F.’E?.‘.’i??_R?‘_Xf_‘l&‘-_r_‘_t__'_i_f_‘_'ﬁ_l
I I
| Make payment } >
I |
I |
I I
I I
I I
I I
I I
| |

Handle Payment Information /

l
P2

Provide confirmation of payment

[

Initiate goods delivery,

!

!

1

|

l
<

1

1

|

!

!

!

!

!

|

T

Payment posting

Store in the payment information

I I
Customer Administrator
)

J

1
Integration component ERP Taler Merchant Backend

Figure 26: Sequence Diagram: Sales Process from ERP System

Bohdan Potuzhnyi, Vlada Svirsh

56

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.3.4 Refund Process

Similar to the refund process initiated from the Taler Merchant Backend, the ERP-initiated refund
process involves the following steps:

1. Saving Data in the Local Database:
The refund request is logged in a temporary local database for traceability and further processing.

2. Locating the Order in the ERP System:
The system verifies the existence of the order in the ERP to ensure the refund request is valid.

3. Initiating Return Order Creation:
Areturn order is created within the ERP system to handle the reverse transaction workflow.

4. Creating a Billing Document for the Refund:
The system generates a billing document to record the financial details of the refund.

5. Posting the Payment Document to the Refund Order:
The refund payment is posted to the return order, completing the process.

Unlike the process initiated from the Taler Merchant Backend, the ERP-initiated refund process allows
for more flexible error handling. In cases where the Taler Merchant Backend fails to respond or returns
an error, the system can trigger alternative workflows or manual intervention to ensure the refund is
processed correctly.

Bohdan Potuzhnyi, Vlada Svirsh 57

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025
Taler Merchant Backend
O)
Y
' I Successful status
O (lzl N from Taler
[~ > @ _______________________ -
E Send refund Receive |
] request feedback
3 |
=
L . (@ |
|
}
3 [
&) &) B) & ") Refund details
€ Notification of Fi Start return Billing Payment
2 NO Response ind order order creation document posting
é creation
Ak G 0
2 v ¢ ¢
Z i=
% E Notification on
o | £

Error Response

——

)

)

é}\ganual return

)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
v

_ | createan Handle refund Manual finding ual retur Manual billing Manual
;—c; refund order g manually of the order creation ot the doc. creation paymen
£ order posting
E
b=
<
@ Send alternative
solution
/\
5 7
Consumer
Figure 27: BPMN: Refund Process from ERP System
Bohdan Potuzhnyi, Vlada Svirsh 58

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

The sequence diagram for the refund process from the ERP system, as illustrated in Figure 28, out-
lines the key interactions between the ERP system, the Taler Merchant Backend, and the administrator
during a refund process. This workflow ensures that refund requests are properly managed, tracked,
and reconciled across both systems. Key steps in the process include:

1. Consumer Request and Administrator Action:

« The consumer initiates a refund request via the ERP system.
« The administrator verifies the request and triggers the refund process within the ERP system.

2. Communication with Taler:

« The ERP system sends a refund request to the Taler Merchant Backend and awaits a re-
sponse.

+ The Taler Merchant Backend processes the request and provides a successful response
back to the ERP system, confirming eligibility for the refund.

3. Finding and Verifying the Order:

« The ERP system searches for the original order associated with the refund request.
+ Upon successfully locating the order, the ERP system proceeds to the next steps.

4, Return Order Creation:

+ Areturn order is created within the ERP system to manage the refund workflow.
+ The ERP system confirms the successful creation of the return order and logs it for further
processing.

5. Billing Document Creation:

+ The ERP system generates a billing document to document the financial aspects of the
refund.

« Confirmation of successful billing document creation is sent to the administrator and logged
in the system.

6. Completion and Notifications:

» The refund process is finalized within the ERP system, and all records are updated accord-

ingly.
+ Both the consumer and the administrator are notified of the successful refund.

Bohdan Potuzhnyi, Vlada Svirsh 59

Taler SAP integration: Theoretical Framework and Practical Implementation

2024-2025

O

X

Consumer

Send refund request

O

A

Admini§trator

>
>

Start refund process

A\

Integration Component ERP
]

Request refund for order ID

Taler Merchant Backend

[Error response from Taler]

Listen for the return bil. doc. creation

[No response from Taler]

|
Send alternative solution |

_ Handle refund manually !

<

Receive feedback
[T e T ey)
Successful response from Taler / ! !
: Successful find order / : :
! ! \ Find order |
A e <~ I
: [Order nd’: found] : :
: ! _ Manual search of the order ! :
1 \‘ I I
| , ProvideorderID . > |
I I
1 | L |
! Successful return order creation / ! !
: } ! Start return order creation |
1 | I I
L L e e] I
: [Return oi‘rder creation failed] : :
! ' _ Manual return creation of the order ! !
I [y 1 I
 Provideorderm™> g
I T I I
I
| Billing document creation successful / |
1 T I I
! I 1 Create Return Billing Document |
I | I
I | I
I | I I
| | ' Payment posting |
N e eeeeoeseeeseeeesee oot ee s eeeneeeesseeeeeeeeeeeess] e)
I
I
I
I
1
1
I
I
1
1
I
I

I

]

| | |
Cons(u)mer Administrator Integration Component ERP

X

%

Figure 28: Sequence Diagram: Refund Order from ERP System

Taler Merchant Backend

Bohdan Potuzhnyi, Vlada Svirsh

60

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.3.5 Payment Reconciliation Process

The payment reconciliation process ensures synchronization of financial transactions between the
Taler system and the ERP system. As shown in Figure 29, the process involves:

1. Check for Unprocessed Transfers: The ERP system identifies pending transactions.
2. Check for Taler Transfers: Filters transfers related to Taler.
3. Reconciliation Decision:

« Yes: Transfers are sent for reconciliation.
+ No: Process ends for non-Taler transfers.

4. Send Transfers for Reconciliation: Transfers are submitted to the Taler Merchant Backend.
5. Update Order Payment Status: If successful, payment status is updated in the ERP system.
6. Manual Intervention: Errors or no response prompt manual updates by administrators.

S =
2|5 =
2 IS g Send
%] % < @ Check transfers confirmation for
5|58 x each order
Bank account 3 ©
=
O |
A Y — — — — T
I A
I I
I |)
— v, .
© I | Send transfers Store in
5 I for Integration DB
] I reconciliation and prepare for
= | | saving to ERP
| ——
|
!
I A
L @)
\vi Taler transfer Undate ord
5 present? pdate order
L (e {%} {@} {@3} payment status
x| o Check for
w o unprocessed Check for new Prepare
E g P Taler transfers transfers
2 o transfers
o c
= |8
Q| e
(&) E é@}
= Mark as failed

[%pdate order

payment status
manually

~————

Administrator

Figure 29: BPMN: Bank Reconciliation Process

Bohdan Potuzhnyi, Vlada Svirsh 61

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3.4 User Interface

As part of this report, we propose a conceptual design for integrating GNU Taler functionalities into the
ERP system. The user interface should focus on providing an intuitive experience with essential visual
feedback for managing Taler-related orders.

Dashboard Instance: Taler Merchant Mensa Automat #1 ¥

Notifications Data: not synced Last synced at 14:35:02, 4 October 1582
Merchant status: running

Orders Orders in this month:

Inventory [13 3 7 2 J

closed refunded waiting for bank transfer failed

Transactions . . .
Transactions in this month:

Settings (407 CHF 113 CHF 83 CHF |

confirmed for transfer for payment

@‘ LER
LL/
Figure 30: Ul: Main Dashboard (Not Synced)

The main screen could feature an overview dashboard with key metrics and status indicators specific
to Taler-related transactions, such as the number of closed, refunded, or failed orders, as well as
transaction summaries. The design concept, depicted in Figure 30, showcases a straightforward layout
with categorized sections for orders, inventory, transactions, and settings, enabling users to quickly
access and manage Taler-related operations.

User roles and permissions should guide access to various views and functionalities within the system.
For instance, administrators might have full access to configurations and transaction details, while
regular users might only see limited views relevant to their tasks. This role-based access control ensures
that sensitive data and operations remain secure and that users only interact with features aligned
with their responsibilities.

For a detailed exploration of various interface designs and user interactions, see the Ul samples
provided in Appendix B. These samples demonstrate potential layouts for dashboards, order views,
transaction summaries, and inventory management screens, offering a comprehensive starting point
for implementation.

Bohdan Potuzhnyi, Vlada Svirsh 62

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

4 Practical Implementation in the SAP S4/HANA Environment

4.1 Integration Overview

The prototype has one main, simple, and pragmatic goal: to enable the GNU Taler digital payment
system to work seamlessly with SAP ERP systems. Specifically, when an order and billing document are
created within SAP and designated for payment via GNU Taler, the SAP system must interact directly
and automatically with the Taler Merchant Backend. This interaction includes creating an order in
Taler, checking the payment status of this order, and updating the status within SAP to accurately
reflect changes. We give more details in the “Transaction/Order workflow” section 4.3.

The crucial goal here is to automate this process as much as possible and to reduce the cost associated
with the initial implementation and ongoing maintenance of the SAP ERP system, offering a cost-
effective solution particularly beneficial for medium-sized enterprises. Other goals are to minimize
manual intervention and to aim for a setup that requires little or no additional configuration within
the SAP environment. A discussion on the benefits of our prototype can be found in the “Benefits and
Added Value” section 4.4.4. Naturally, this automation-driven approach has certain limitations, which
will also be discussed in the following sections.

We argue that making the integration tighter would not be worth the expense (due to the resulting
increase in configuration costs that have to be spent on setting it up perfectly) for medium-sized
enterprises. Larger enterprises typically have highly customized SAP systems, meaning any integration
would likely require significant adjustments for compatibility. This topic will be explored in detail
within the “Challenges and Solutions” 4.4 and “Package Implementation” 4.2 sections.

To achieve the outlined integration goals, 3 core SAP modules are referenced and used:

1. Sales & Distribution (SD)
2. Material Management (MM)
3. Financial Accounting (FI)

Our design and implementation are most likely compatible with various versions of the SAP ERP system,
including older versions such as SAP R/3!. The integration is built around a BSP application, standard
SAP tables and values from modules described earlier, which have remained largely unchanged during
the transition from SAP R/3 to S/4HANA. Although support for SAP R/3 will officially end in 2027,
with extended maintenance lasting until the end of 2030 [26], many businesses continue to use this
version.

This is not guaranteed, as the implementation was tested only on SAP S/4HANA 2020, yet by all available documentation,
we believe that it should work on SAP R/3 as well. As used interfaces from SAP standard were already completely available
in the old R/3 as reason that it will be 99% compatible.

Bohdan Potuzhnyi, Vlada Svirsh 63

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

4.1.1 System Configuration

The integration is done entirely within a single ABAP development package, named in our current
systemas ZP_007_005_TALER_SAP. This name was chosen by the SAP system and may appear in
various images throughout this document. Although this naming convention has no strict significance
and can be modified, we suggest retaining the keyword TALER to ensure Taler integration packages
are easy to discover.

We opted for a package-based approach to simplify installation and updates across SAP systems,
especially the one using the ABAP GIT module, a widely adopted tool for managing ABAP code
within development environments [27]. Once ABAP GIT isinstalled, the TALER-SAP package can
be cloned from the publicly accessible repository hosted on the GNU Taler Git platform [28]. Following
this, activate these package-specific tables with ABAP Dictionary usingt-code SE11. At the time
of writing this thesis, the package uses the following tables:

ZTLR_CONFIG
ZTLR_NOTES
ZTLR_INVENTORY
ZTLR_INV_HSTAT
ZTLR_ORDER_LOG
ZTLR_ORDER_PROD
ZTLR_ORDER_LOG_HSTAT

No o~ N

25 vihsapd30.hevs.ch/sap(bD1IbIZIPTIWMA=:

Dashboard Component Settings
Notifications Product Description: Taler Merchant Backoffice URL:
Orders [Product from SAP J [https://backoffice.talerintosap.us J
Inventory Order Summary: Username:
(" Order from SAP J [admin]
HTTPS Logs h
Payment Method: Password:
Settings [b J (J
Country: Currency:
(bE) (‘xupos)

Sales Org:

('psoo)

Plant:
(Hpoo)

Storage Location:

(L)
(GAer

Figure 31: Ul screenshot: Taler SAP Settings page

Bohdan Potuzhnyi, Vlada Svirsh 64

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

To successfully utilize this package, additional configurations within the SAP environment are necessary.
Figure 31 illustrates two configuration groups required by the package:

1. SAP-specific configurations (left column)
2. GNU Taler-specific configurations (right column)

We will now discuss the SAP-specific configuration entries, detailing their purpose, where they are
used, and how to configure each:

1. Product description: Usually, SAP products (materials) have associated descriptions. However,
if absent, this field provides a default product description used within the GNU Taler system. It
will be shown to the customer in his Taler Wallet receipt.

2. Order summary: SAP typically lacks order descriptions, however, GNU Taler requires each order
to have a summary. This order summary will appear to customers during payment processing,
and will be shown as the summary on the related receipt.

3. Payment method: Defines the specific payment method the integration component recognizes
toinitiate GNU Taler payments. This method must be explicitly created by users using transaction
Customizing: Maintain Payment Programusingt-code FBZP and associated with a
country code. Presented by data element SCHZW_BSEG, as a result it has data type of CHAR of
length 1.

4. Country code: Identifies the country associated with the configured payment method, sales
organization, plant and storage location. Entry value is CHAR of length 3, which is data element
LLAND. Users can create it using t-code SPRO.

5. Sales organization: Indicates the sales organization utilized to retrieve order and billing docu-
ment data. Value is CHAR of length 4, which is data element VKORG. Can be manually configured
using t-code OVX5 or SPRO.

6. Plant: Defines the plant location from which product data will be obtained. Presented by CHAR
of length 4, with data element WERKS_D. Can be set up by users through t-code 0X10 or SPRO.

7. Storage location: Specify the storage location used for product data retrieval. Must be of type
CHAR of length 4, where data element is LGORT _D. Usually established by users using t-code
0X09. Creation of new storage location is particularly useful if only specific products are to be
sold using GNU Taler. Otherwise, the existing standard storage location can be used.

Typically, operational SAP S/4HANA systems already include configurations for points 4 to 7. Therefore,
unless explicitly isolating the GNU Taler integration, you can usually reuse these existing settings, leaving
only the new payment method to be configured specifically for this integration.

Regarding GNU Taler-specific configuration, the installation and setup of the Taler Merchant Backend
is required. setup completion, fill in the fields Taler Merchant Backoffice URL, Taler

Bohdan Potuzhnyi, Vlada Svirsh 65

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

username, and Taler password. Installation instructions for the Taler Merchant Backend are
provided in the official GNU Taler documentation [7] and accompanying official tutorials [29]. For initial
testing purposes, we strongly recommend setting the currency field to KUDOS or another suitable
test currency. After successful testing, this field can be left empty, enabling the system to automatically
use the currency specified in the SAP order and billing documents.

4.2 Package Implementation

One of the most critical considerations during our integration was ensuring transparency: users should
clearly see what happens behind the scenes of our module, while the interface remains visually ap-
pealing and intuitive. To meet these criteria, we had to choose an appropriate SAP user interface
framework. SAP offers several possibilities, including Reports, ALV tables, custom web servers, Fiori
applications (UI5 with OData), and BSP applications.

We evaluated each of these options carefully:

+ Reports and ALV Tables: Both are powerful and versatile tools but require significant SAP-
specific knowledge and patience from end-users, making them less suitable for an intuitive user
experience.

+ Custom Web Servers: This option provides flexibility but requires extensive additional program-
ming effort without offering significant advantages over other available frameworks.

« FioriApplications: Clearly, this would be the most user-friendly and advanced solution. However,
Fiori applications require additional infrastructure, configuration and knowledge, making them
less accessible and more costly for certain enterprises.

+ BSP Applications: Despite being an older technology, BSP applications remain supported across
various SAP versions. They require no additional licensing and can be created and accessed
directly via SAP GUI using transaction code SE80. Although BSP introduces some complexities
in implementation and might lack certain advanced functionalities, it still allows us to achieve
our main goal: presenting comprehensive information clearly and cleanly in a unified interface.

Given these considerations, we concluded that BSP applications offer the best balance between
usability, transparency, and compatibility for our integration purposes.

4.2.1 Architectural Updates

Primarily motivated by the need for a user interface, we made various minor adjustments to the
software architecture of our original design shown in Figure 4. The revised architecture, shown in
Figure 4, adds the Taler BSP Ul as a new component which uses the functions from the Marshall

Bohdan Potuzhnyi, Vlada Svirsh 66

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

«subsystem» ERP

O e oo O «component» {I _
Interface

Taler SAP package

«component»
Taler BSP Ul [---> T {I /o\

! > Integration module ~

Y :

!
«component» E
Marshall

]
L

«component» E
. Internal function
“ and logic

«component»
Bank adapter

«subsystem» Taler Merchant

L]

«component» {I _C «component»
Taler Merchant LibEuFin Nexus

(usually run by authorised parties)

L H <)

L
]
«subsystem» Payment System Providers |—|—|
r(lf\

[=t
il

«component» {I «component» & | [
Taler Exchange Bank Merchant
1
1
«component»
Bank exchange

Figure 32: Component Diagram: Infrastructure of the Integration to SAP

Bohdan Potuzhnyi, Vlada Svirsh 67

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

and Integration module components to receive data, or function calls for insert/updates to be
made. Another minor change includes restricting the Integration module to only communicate
with SAP related modules, and to not call the Marshall component. Only the later can use the
Integration module. Thissimplifies communication between these components.

Since our working prototype is now functional, we can illustrate the package structure in a more
detailed way comparing to Figure 5, better displaying the created classes (see Figure 33):

ERP+Taler

Taler Merchant

Merchant logic & SPAA

«access»

SAP
v
ZP_007_005_TALER_SAP
B)—l
[------«@CCESS» - ==-=-=-=-=-=-=-=-==-- ZCL_TALER
TelerBSPUL .- et : —GENERAL Existing SAP
. ; ' ! system
«access» —| d «access» | Y
«access» .-.-» ZCL_TALER)J—| 1| - caccess» - | Previous subsystem &
v _STATISTIC ZCL_TALER E workflow
ZCL_TALER _ORDER '
—INV—MGMT T —_— A CCE S S > ST e s

Figure 33: Package diagram: SAP and Taler Integration

1. TALER_BSP_UI — The central BSP application serving as the integration’s user interface, using
the next three classes for data retrieval from SAP and managing the GNU Taler configuration.

2. ZCL_TALER_CONFIG — Manages all configuration settings for GNU Taler integration, featuring
methods such as sync_a'l 1, which calls other classes to synchronize data between GNU Taler
and SAP systems, as well has util functions which can be used by next 2 classes.

3. ZCL_TALER_INV_MGMT — Handles inventory management tasks, such as fetching product
data and ensuring synchronization with GNU Taler, including posting, updating, and deleting
products in the GNU Taler system.

Bohdan Potuzhnyi, Vlada Svirsh 68

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

4, ZCL_TALER_ORDER — Responsible for order, billing and accounting processing, including
reading order and billing documents and maintaining synchronization with the GNU Taler system.

5. ZCL_TALER_STATISTIC — Supplies aggregated statistical data for the BSP application dash-
board, supporting visualization of order activity, tax revenue, net income, and units sold over
configurable time periods.

Each of these modules interacts in some capacity with the existing SAP system, thereby maintaining
clear communication and seamless integration.

4.2.2 Database Tables Overview

Next, we discuss the tables created within our integration package. Figure 34 displays the Entity-
Relationship Diagram (ERD). It illustrates the tables which were introduced by the integration (marked
with violet), and shows how we reference the existing SAP tables (marked with blue). As usually tables
in SAP are quite complex and large, as well as their relationships, we have not included all the columns
in the diagram.

An observing reader might question how the locking will work for these tables. The explanation lies in
the inherent functionality of SAP systems, which automatically handle table locking and unlocking
during data operations. Therefore, explicit versioning was considered redundant.

As was mentioned before, our package has 7 tables, here is a brief overview of each of them:

1. ZTLR_CONFIG: Stores the configuration settings for the GNU Taler integration, including pay-
ment methods, sales organization, plant, and storage location, and validity information of the
configuration.

2. ZTLR_NOTES: Captures notifications and notes related to the GNU Taler integration, allowing
users to keep track of important information or updates inside all parts of the integration, starting
from the information about the validity of the config, and ending with the information about
changes of states for the orders and inventory.

3. ZTLR_INVENTORY: Holds product data fetched from the SAP system, including product IDs,
descriptions, and other relevant information needed for the synchronization of materials to the
GNU Taler system, also contains the information about the status of the material and so status of
the synchronization and timestamp of the last synchronization.

4. ZTLR_INV_HSTAT: This table is used to store the history of HTTP requests for inventory synchro-
nization, allowing administrators to track changes and updates made seeing the information
that SAP had and which response Taler gave.

5. ZTLR_ORDER_LOG: Records order data fetched from the SAP system, including billing document
IDs, amounts (net value + tax amount), as well as Taler related info, and some blocks. This table

Bohdan Potuzhnyi, Vlada Svirsh 69

Taler SAP integration: Theoretical Framework and Practical Implementation

2024-2025

mandt £
conf_id &
taler_uri
taler_username
taler_password
taler_cur_repl
def_prod_desc
def_orded_desc
sap_pay_method
sap_country
sap_sales_org
sap_plant
sap_stor_loc
last_changed_on
last_changed_by
correct
check_timestamp
taler_req_uri

taler_bsn

mandt &

g_doc &
sales_order
currency
amount
tax_amount
sap_timestamp
state
taler_state
taler_pay_uri
timestamp
refund

error

mandt
char_35
char1024_cs
char_35

char132
char_35
char1024_cs

char1024_cs

schzw_bse :
lland =
vkorg =

werks_d :

Igort_d
timestamp
uname
boolean
timestamp
char1024_cs

char1024_cs

mandt

vbeln_vf s

vbeln
waerk >
netwr >
mwsbp >
timestamp
char20
char20
char1024_cs
timestamp
boale_d

boale_d

VBRP

MANDT 2
VBELN £
POSNR £
MATNR
FKIMG
VRKME

NETWR

mandt
vbeln
posnr
matnr
fkimg —o
vrkme

netwr

¥

¥

¥

¥

mandt £ mandt
product_id 2 matnr
description maktx =
price stprs =
currency waers >
stock labst =
unit meins >
status char20
timestamp timestamp
ztir_order_hstat
mandt £ mandt
= billing_doc & vbheln_vf =
entry_id & char_35
on_state char20
http_code int4.
http_response dstring
timestamp timestamp
req_body dstring
req_url dstring

3

MANDT £ mandt
MATNR 2 matnr +
MTART mtart
MATKL matkl
ERSDA ersda
ERNAM ernam

|

‘WERKS 2> werks_d

|

MATNR 2 matnr

SPRASS spras

MAKTX maktx —o
‘o~ VKORG £ vkorg

T

'

MEINS & meins o

Figure 34: ERD: Taler SAP Integration

L

o

i1

= WERKS

< MATNR & matnr

BWKEY £ bwkey

Lo STPRS stprs
WAERS waers =

ZLSCHS

TOOIL

werks_d

LGORT & Igort_d

mandt 2 mandt
< product_id £ matnr
entry_id & char_35
on_action char20
http_code int4
http_response dstring
timestamp timestamp
req_body dstring
req_url dstring
mandt £ mandt
= sales_order 2 vbeln
<= material_number £ matnr
<= material_desc makix
<= quantity fkimg
+= units meins

. 1042Z

schzw_bseg

mandt £ mandt
entry_id £ char_35
system_part char21
not_type char20
short_message charl024_cs
long_message dstring
timestamp timestamp

VBRK

MANDT & mandt

© VBELNgZ vbeln
FKART fkart

> FKDAT fkdat
o NETWR netwr
WAERK waerk

o— MWSBP mwsbp

TOOS

LAND1 £ lland

TCURC

o~ WAERSS waers

< MATNR 2 matnr
< WERKSS werks_d
< LGORT & Igort_d
o LABST labst

Bohdan Potuzhnyi, Vlada Svirsh

70

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

is central to our integration as it is used for tracking orders processed and maintains the statuses
(we use SAP status and Taler status) of the related billing document.

6. ZTLR_ORDER_PROD: Contains product details related to specific orders, linking products to
their respective orders in the GNU Taler system.

7. ZTLR_ORDER_LOG_HSTAT: Similarto ZTLR_INV_HSTAT, this table stores the history of HTTP
requests related to order synchronization, allowing administrators to monitor the status and
changes of orders processed through the GNU Taler system.

4.2.3 User Interface

In our user interface, we provide two distinct forms of log data:

« HTTP Logs (*_HSTAT tables): Displayed in the “Logs” tab, these show the history of the HTTP
requests that were made to the GNU Taler merchant backend, what our component tried to
upload, and what was the response from the GNU Taler merchant backend, displayed on the
Figure 35. This is useful for testing, debugging, as well as for the operational support of this
integration.

« User Notifications (ZTLR_NOTES table): Shown in the “Notification” tab, these are done
intentionally more user-friendly, and is used to show the information about all the changes that
were made on the system, in a more human-readable way. Displayed on the Figure 36.

x o+

Vihsapd30.hevs.ch/sap (bD1IbIZIPTIu:

Dashboard Order requests:
" . BILLING DOCUMENT STATE OF BIL. DOC. HTTP CODE HTTP RESPONSE

Notifications
90000016 check_refund 200 {"wire_reports": [], "exchange_code": 0, "exchange_http_status": 0, "exchange_ec": 0, "exchange_hc": 0, "deposit_total": Kl

Orders 90000032 check_paid 200 { "taler_pay_uri": "t talerintosap. =W6J!)TG3FINO4MQTFE1R2C", "order_stat.
90000030 check_paid 200 { "taler_pay_uri" KY7Z! 248", "order_statu:
90000024 check_paid 200 { "taler_pay_uri" ITCGA34", "order_stal

Inventory
90000021 check_paid 200 { "taler_pay_uri": " DESQO3AB", "order_status

HTTPS Logs 90000018 check_paid 200 { "taler_pay_uri" talerintosap, " "order_status.
90000016 check_refund 200 {*wire_reporls': [, "exchange_code': 0, “exchange_http_stalus": 0, "exchange_ec": 0, “exchange_hc": 0, "deposit_total":"Kl

Setti 90000032 check_paid 200 { "taler_pay_uri": " talerint JV725WDTG3F INO4AMQTFE1R2C", "order_stat.

etlings 90000030 check_paid 200 { "taler_pay_uri": KY7Z! 248", "order_status

90000024 check_paid 200 { "taler_pay_uri" ITCGA34", "order_stal
90000021 check_paid 200 { "taler_pay_uri" DESQO3A8", "order_status
90000018 check_paid 200 { "taler_pay_uri": p. ", "order_status
90000016 check_refund 200 {"wire_reports™: [], "exchange_code": 0, "exchange_http_status": 0, "exchange_ec": 0, "exchange_hc": 0, "deposit_total": "KI
90000032 check_paid 200 { "taler_pay_uri": " =\ 1NO4MQTFE1R2C", "order_stat.
90000030 check_paid 200 {"taler_pay_uri": " =t KY 48", "order_status
90000024 check_paid 200 { "taler_pay_uri" talerintosap, {TCGA34", "order_stat
90000021 check_paid 200 { "taler_pay_uri": talerints DESQO3A8", "order_status
90000018 check_paid 200 { "taler_pay_uri": " talerint 922K ', "order_status
90000016 check_refund 200 {"wire_reports": [], "exchange_code": 0, "exchange_http_status": 0, "exchange_ec": 0, "exchange_hc": 0, "deposit_total": "KI
90000032 check_paid 200 { "taler_pay_uri" talerintosap. =W6JV725WDTG3FINO4MQTFE1R2C", "order_stat.
90000030 check_paid 200 {"taler_pay_uri" taleri - 48", "order_status
90000024 check_paid 200 { "taler_pay_uri": taleri ITCGA34", "order_stal
90000021 check_paid 200 { "taler_pay_uri" 'DESQO3A8", "order_status
90000018 check_paid 200 { "taler_pay_uri": " =FFN410PH5Q922K " "order_status.
90000016 check_refund 200 {"wire_reports": [], "exchange_code": 0, "exchange_http_status": 0, "exchange_ec: 0, "exchange_hc": 0, "deposit_total": "KI

Page| 1/of25 [=][x]

~ Inventory requests:
@AL E R PRODUCT ID ACTION FOR PROD. HTTP CODE HTTP RESPONSE
LL/

TALER_BOTTLEOT update 204

Figure 35: Ul screenshot: Taler SAP Http logs page

Bohdan Potuzhnyi, Vlada Svirsh 71

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

% vihsapd30.hevs.ch/sap(bD1IbIZPTIwMA==)/bc/bsp/sap/z_taler_uijnotifications.ht

Dashboard Welcome to the Notifications!
Notifications SYSTEM PART NOTIFICATION TYPE SHORT INFO VIEW MORE INFO
Ordors inventory Sync finished (HDOO/BIEL)
inventory TALER_BOTTLEO1 — updated OK
Inventory
inventory Sync started (HDOO/BIEL)
ke inventory Sync finished (HDOO/BIEL)
SEER inventory TALER_BOTTLEO1 — updated OK
inventory Sync started (HDOO/BIEL)
order 0090000016 — refund POST 200
order [error | 0090000016 — refund POST 400
order [error | 0090000016 — refund POST 400
order [error | 0090000016 — refund POST 400
order [error | 0090000016 — refund POST 400
N order [error | 0090000016 — refund POST 400
@L ER order 0090000032 — order posted

Figure 36: Ul screenshot: Taler SAP Notification page

4.2.4 Data Synchronization

Concerning the question of how the data synchronization between the GNU Taler and SAP systems is
handled, each class has its own dedicated synchronization function. These functions typically iterate
through all possible states, checking the current status, and then updating the data first within the
SAP system and subsequently within the GNU Taler system. Additionally, to enhance synchronization
performance, our module includes a webserver component that receives webhook notifications directly
from the GNU Taler system. These webhooks are then used to promptly update data within the SAP
system. Ideally, webhook integration would have been implemented directly using the SAP S/4HANA
Cloud API. However, this service was unavailable in our implementation scenario, which led us to
consider the following alternative approaches:

1. Manual Setup via User Exits: This method involves manually configuring user exits in specific
SAP transactions to trigger synchronization events. However, this approach was evaluated as not-
optimal, as it requires significant manual configuration from end users. Significantly increasing
the complexity of the overall implementation, and yet it does not guarantee that some changes
did not take place in the SAP system.

2. Asynchronous Background Processing: In this approach, synchronization tasks are tried to
be handled asynchronously, with updates being processed in the background. Whenever users
need the most recent data, synchronization is explicitly triggered, ensuring the displayed data
remains up to date without imposing extensive manual effort on the users.

Bohdan Potuzhnyi, Vlada Svirsh 72

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

3. Historical Data Only: This option would restrict users from viewing only historical data without
real-time updates. However, this approach was quickly discarded, as it would negatively impact
the user experience by presenting outdated information.

After evaluating the trade-offs, we selected the second option — using asynchronous background pro-
cessing combined with on-demand updates — as it provided the best balance of usability, performance,
and complexity of implementation and roll-out.

4.3 Transaction/Order Flow

In this implementation, we primarily focused on the ERP-centric integration approach, previously
detailed in Section 3.3. One of the main tools we used to clearly illustrate how the integration must
operate are BPMN diagrams.

We present the updated BPMN diagram corresponding to the general sales process depicted previously
in Figure 25. The refined diagram specific to the SAP implementation is shown in Figure 37. Comparing
both diagrams, the primary difference is the addition of a specific step during the order creation
phase, more specifically Billing Document Creation, reflecting a standard practice in SAP
systems. Beyond this, both diagrams are largely identical. This minimal difference is also present when
contrasting other previous designs with the actual implementation.

In previous sections, we have not covered an aspect of the integration that, while not always the most
important, remains crucial: defining the possible order states and their progression through the system
and time. To further clarify this, we now introduce the order flow diagram shown on Figure 38, which
details precisely how order states evolve throughout the process. In the center of this diagram, the
label “till time X” refers to the pay_deadline from Taler by which the customer must complete
payment for the order created via the Taler Merchant Backend. The variable X therefore represents
the payment expiration time configured during the order creation process. Additionally, there are two
conditional elements (“if” boxes) containing the label “200?”. These describe checks performed on the
HTTP response code.

Thisdiagram is particularly valuable for gaining a clear understanding of possible order state transitions
and potential outcomes within the integrated system.

Bohdan Potuzhnyi, Vlada Svirsh 73

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025
2 T -~
g |
v 3 e [© e I
T = Create order Send payment Listen for order Send info to
Z |5 link being paid the ERP |
Tl A |
% Y "
ko [b4 ¢ I
= I | I |
| P — | I |
]] I |
\V/ I |
N~
Send order @ggve the order | I
creation status link to | |
request integration DB | |
I |
= |
(0]
5 = |
Qo
5 hpdate the Wait for |
8 payment
£ < information in payment to be |
9] <] ived
7 | = SAP receive
A I I
2] g {%}
% k= Process order |
- info |
c
5 |
: = %
3 Update I
O Send info to
payment status |
user ;
to "paid" |
] — |
I |
E Y 2 |) |
2 reate order reate billing | - |
2 . Finish order
c with Taler document for .
= | (provide goods) |
£ payment order
< 1 |
) [[
order info : payment link l_ - - - payment |
T T
- AV I
" =)Y & Y- -
g Receive [gﬂ
3 Place order payment Pay order
5 instructions
o Start Buying
Process
Figure 37: BPMN: Sales Process from SAP System
Bohdan Potuzhnyi, Vlada Svirsh 74

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Create order and

)

billing doc.
Fetch order from SAP
tables into component
order_status: created tables

Post orders to Taler

Check for cancel Save the response | order_status: posted
billing doc. yes from Taler taler_status: unpaid
error: true error: false

Parse response from

order_status: posted_processed

) - Taler and create
taler_status: unpaid

payment link

Provide payment link
and look for payment
till time X

order_status: not_paid
taler_status: removed

order_status: paid
taler_status: paid

Mark order as
canceled

Order has not been
paid

order_status: paid
taler_status: paid

order_status: paid

Order has been paid taler_status: paid

Cancel billing doc.

Order has been wired
created

order_status: completed

order_status: to_be_refunded taler status: wired

taler_status: paid

Clear the billing doc,
with incoming bank
Send refund request transfer
to Taler
Handle manually Provide refund link
order_status: to_be_refunded order_status: refunded
taler_status: wired | paid taler_status: refunded

error: true

Figure 38: Order flow: Sales process from SAP System

Bohdan Potuzhnyi, Vlada Svirsh 75

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

4.4 Challenges and Solutions

Implementing a GNU Taler integration with SAP systems presented several notable challenges. Some
were critical blockers, others were minor issues easily resolved with the assistance of instructors,
while a few remained unresolved. Reflecting on the entire process, we can confidently say that if
we were to start again, our approach would differ significantly not in terms of workflow, but rather
concerning architecture and technology choices. Unfortunately, several limitations and complexities
only surfaced during the implementation phase despite thorough initial research. Even though we
received continuous support from experienced experts familiar with SAP systems, some issues arose
from less frequently used features within SAP, unfamiliar even to these specialists. Additionally, our
SAP system, primarily intended for educational purposes, lacked several advanced features that could
have significantly improved our integration.

4.4.1 User interface and how did we even end up here...

We strongly believe that approximately 80% of a product’s success relies not solely on functionality or
feature sets, but rather on how comfortable and intuitive it is to use. This is particularly true within
complex domains such as financial transactions and payments. Recognizing that our initial backend-
focused approach used during development, testing, and debugging was not enough for end-users,
we prioritized improving usability and aesthetics. A typical example of our initial user interface can be
seen in Figure 39.

While the information presented was sufficient to understand system states, it clearly lacked visual clar-
ity and user-friendliness. Therefore, we went for an improved alternative and, as previously discussed,
selected BSP applications as the main user interface framework. For those unfamiliar, a typical default
BSP application is shown in Figure 40, representing an innovative Ul solution for the early 2000s, yet
lacking many modern interface features, especially comparing to today’s Fiori applications.

Upon successful rendering of our data in BSP applications, we were confronted with another impor-
tant consideration: how to further enhance user-friendliness and intuitiveness beyond the default
presentation. Fortunately, BSP applications inherently offer flexibility, including predefined HTMLB
elements and compatibility with standard HTML, CSS, and JavaScript. Combining these standard web
technologies with the ability to communicate back to the SAP system allowed us significant flexibility.
Unfortunately, BSP applications lack robust event-listener capabilities, requiring traditional page
reloads to reflect data updates. While not optimal, this method remains functional and reliable. For
large-scale and more advanced implementations, transitioning to Fiori applications would likely pro-
vide a significant usability improvement. Nevertheless, our current approach sufficiently demonstrates
integration feasibility and ensures compatibility across older SAP versions.

Bohdan Potuzhnyi, Vlada Svirsh 76

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

eoe D30 (1) (200}

List Edit Goto System Help
v D KAX A A B«

SAP Fetch the bill docs details

Y —————

‘Fetch the bill docs details) 1

=== Billing Headers ===

90000004 45,00 EUR
98000012 9,80 EUR
9ee0eea7 9,00 EUR
90000017 45,00 EUR
90000018 135,080 EUR
90000019 45,00 EUR
90000016 45,08 EUR
90000020 45,00 EUR
90000021 45,00 EUR
90000022 45,00 EUR
90000023 45,00 EUR
90000024 45,00 EUR
90000025 45,00 EUR
96000026 45,00 EUR
90000027 45,00 EUR
90000028 45,00 EUR
90000029 45,00 EUR
90000030 90,00 EUR

=== Billing Items
9eeeeeed {"order": {"summary": “Order from SAP","order_id": "@@890000004","amount": "KUD0S:45.080","products": [{ "product_id": "TALER_BOTTLE@1"}]}}
TALER_BOTTLE@1 Taler Branded Water Bottle 1,000

< 5

»| D30 | vihsapd30 | INS

Figure 39: Report screenshot: Fetching billing documents from SAP

SAP HTMLB Extension x o+

23 vihsapd30.hevs.ch/sap(bD1IbiZjPTIWMA==)/bc/bsp/sap/sbspext_htmib/default.htm

Welcome, Lear-430 BFH-007 = P ogat E ! y

Sospoxt | sbspext phimis|sbspext tabl| i samples | Desgn DESIGNZ008| Languege EN | Wih Accessbity [

Settings

Test Suite : <htmlb:breadCrumb>

EN

‘

‘

‘

With Accessibly:

RTL Rendaring:
HTMLB |
* & BreadCrumb

* & Button

& Chart

* & CheckBox

* & DateNavigator

* & Document

* B DropdownLisiSox

* & FleUplosd
& Fom foxtt > toxt2 > taxt3 > toxth

oo

% <htmib:breadCrumb> #1 : Event Handling

Y% <htmib:breadCrumb> #0 : Attributes - id

* & GridLayout
- Sow

* & Image
@ InputField
@ llemlist
- Label

et > o2 > 1ot > toxté
& Lk

% <htmibzbreadCrumb> #1 : Attributes - id+tooltip+onClick

- LisBox

* © RadoButonGroup
* Tabloview

* & Tabstip

* S Textedit

* S TextView

- Ty

B Tee

Y% <htmib:breadCrumb> #2 : Attributes - id+tooltip+onClick+behavior=SINGELINK

lext1 > texi2 > toxt3 > toxtd

% <htmib:breadGrumb> #3 : Attributes - id+breakSign

textt >> text2 >> textd >> textd

o
g
g
i

Figure 40: BSP screenshot: Sample BSP application to see different tools and features

Bohdan Potuzhnyi, Vlada Svirsh 77

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Finally, we developed an appealing and practical user interface shown in Figure 41. This Ul presents the
order details page screen in the background and in the front displays the payment view, enabling users
to share payment links with their customers; this view is particularly useful for scenarios involving
on-site sales.

C % vihsapd30.hevs.ch/sap(bD1IbiZjPTIWMA==)/bc/bsp/sap/z_taler_uiforders.htm?SESSION_TOKEN=axVh9RgTUZcsO8UQxabcCg==

Taler Order Status Page

Pay with Taler

Scan this QR code with your mobile wallet:

Or open your Taler wallet

Don't have a Taler wallet yet? Install it!

Leam more about GNU Taler on our website.

Copyright © 2014—2021 Taler Systems SA

Figure 41: Ul screenshot: Integrated order payment view in SAP with QR code generated from Taler
Backend

4.4.2 Security and Compliance of this package

In Section 5.2, we previously outlined general security considerations. Here, we focus specifically on
the security objectives achieved through our integration:

1. Authentication and Access Control: Our integration fully supports authentication tokens from
the Taler Merchant Backend. SAP-side access restrictions leverage standard authorization mech-
anisms, ensuring that only permitted users can access the BSP application. Additionally, all
data modifications reference specific user identifiers, adhering to SAP’s standard client (logical
system) mechanism for data isolation.

2. Encryption and Data Protection: All communication between GNU Taler and SAP systems occurs
via HTTPS, guaranteeing data encryption during transmission. Occasionally, SAP systems may
restrict HTTPS use; thus, we strongly advise businesses to properly configure and install required

Bohdan Potuzhnyi, Vlada Svirsh 78

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

certificates within their SAP environment. Moreover, if businesses host the Taler Merchant
Backend on the same server as their SAP system, HTTPS encryption may be optional and our
integration will work also with it.

3. Synchronization mechanism: As previously described, our synchronization strategy includes
systematic background data updates with webhook-triggered updates, meeting security integra-
tion objectives and ensuring data accuracy.

4. Implementation Considerations for ERP Systems: These considerations were strongly con-
sidered during the implementation between the members of the team. Given the inherent
limitations of our SAP system, we consciously opted against incorporating additional complex
mechanisms, ensuring practicality within our current context.

Regarding compliance, we firmly believe that our integration introduces no additional risks to the
SAP system, the GNU Taler infrastructure, or system administrators. Each involved system inherently
mandates business compliance with applicable local regulations. As this integration operates as an
internal SAP tool, it does not introduce additional compliance complexities or requirements.

4.4.3 Operational Challenges

Our integration aims for simplicity in installation and operation, minimizing necessary human inter-
vention. However, many challenges might still arise during real-world implementations, especially for
businesses undertaking their initial SAP rollout. SAP’s known to have huge configuration capabilities,
which are beneficial to all enterprises, yet they can become blocking and overwhelming for smaller
or medium-sized businesses. These enterprises typically face considerable costs when engaging SAP
consultants, who are often expensive and essential for comprehensive initial system configuration.

As aresult, such integrations cannot simply be deployed directly to production environments with-
out extensive testing in multiple configurations, potentially requiring further custom adjustments,
especially if standard SAP tables have been modified or customized.

Additionally, although SAP is a well-established system, it continues to receive frequent updates,
requiring regular validation and updates to our integration to ensure ongoing compatibility and cor-
rectness. Businesses must also verify their SAP licensing terms carefully, as licenses vary and may
impose restrictions or limitations that affect integration deployment. During our implementation, SAP
licensing constraints and imposed restrictions significantly influenced certain decisions and shaped
aspects of our integration.

Bohdan Potuzhnyi, Vlada Svirsh 79

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

4.4.4 Benefits and Added Value

Despite these inherent limitations and operational challenges, we believe strongly that the integration
provides significant overall benefits, particularly through its user-centered design and transparency.
Additionally, our adoption of the GPL v3 Free/Libre (open source) software license aligns with our core
principle of accessibility, empowering businesses to explore, adapt, and optimize our integration freely,
according to their specific needs.

At first glance, listing the benefits of integrating another payment method may appear redundant.
However, this integration differs significantly due to GNU Taler’s distinctive principles and innovative
approach to digital cash payments, differentiating it fundamentally from existing methods. This project,
primarily driven by enabling GNU Taler payments, extends considerable added value to businesses,
notably due to its free-software nature as freely available and openly accessible for modification and
customization.

In typical commercial scenarios, just licensing the SAP S/4HANA system requires 10,000 EUR up-front,
followed by ongoing annual fees of around 2,000 EUR per user for SAP S/4HANA cloud systems?.
Whether this financial investment is justifiable remains an individual business decision.

Considering alternatives, businesses wishing to implement digital payments traditionally turn to
solutions such as the SAP Digital Payments Add-On [30]. Although native and robust, this solution
typically offers limited Payment Service Provider (PSP) support, costing roughly 32,000 EUR annually
per user. In stark contrast, our integration provides comprehensive openness — allowing full adaptation,
free of tenant restrictions, and the download is gratis.

We strongly believe the overall value provided by our integration significantly exceeds the scope and
capabilities of current market alternatives.

20fficial pricing details are not publicly available due to variability in business-specific configurations. The mentioned
prices are approximate figures based on publicly available information as of May 2025.

Bohdan Potuzhnyi, Vlada Svirsh 80

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

5 Discussion

5.1 Limitations

The study highlighted several potential challenges that could arise during the integration of GNU Taler
with ERP systems. Mismatches in data formats between GNU Taler and ERP platforms, such as SAP or
Dolibarr, could complicate data synchronization processes. APl limitations, particularly in ERP systems,
may restrict certain functionalities, such as handling edge cases like partial refunds or batch inventory
updates. The theoretical approach also identified delays in real-time data exchange as a potential
hurdle, which could impact operational efficiency in high-volume environments.

5.2 Security Considerations

Authentication and Access Control

GNU Taler APIs require authentication tokens for access, ensuring only authorized users can perform
operations. Tokens must be securely stored and scoped to specific permissions. Role-Based Access
Control (RBAC) within ERP systems should limit sensitive operations like refunds to trusted personnel.

Encryption and Data Protection

All communications between GNU Taler and ERP systems must use TLS/SSL encryption to secure data
in transit. Sensitive data, such as order and payment information, must be encrypted at rest using
database or field-level encryption.

Synchronization Mechanisms

Periodic reconciliation jobs ensure consistency between GNU Taler and ERP systems, while webhooks
enable real-time updates on payments and inventory. Failed notifications should be retried with
exponential backoff. Conflict resolution strategies and timestamps help identify the source of truth
during discrepancies.

Implementation Considerations for ERP Systems

Using secure API gateways enforces rate limits and monitors APl usage. Detailed access logs and
monitoring tools help detect suspicious activities, while audit trails track changes to sensitive data for
compliance and accountability. These practices ensure secure and reliable ERP integration.

5.3 Integration Strategy

The integration of GNU Taler with ERP systems involves a systematic and phased approach to ensure
minimal disruption to existing workflows while leveraging the unique capabilities of both platforms.

Bohdan Potuzhnyi, Vlada Svirsh 81

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

By combining technical precision with strategic foresight, the following steps are recommended:
Connecting Taler’s Backend APl with the ERP System

The first step in the integration process is establishing a seamless connection between Taler’s backend
APl and the ERP system’s financial and operational modules. This involves:

+ Conducting a detailed analysis of the ERP’s existing architecture to identify integration points
that align with Taler’s APl endpoints.

+ Developing middleware to act as a translator between the ERP and Taler, ensuring compatibility
and optimal performance.

+ Testing APl authentication mechanisms, such as token-based access, to guarantee secure and
reliable data exchange.

By focusing on compatibility and security in this phase, businesses can establish a strong foundation
for further integration.

Synchronizing Order and Payment Data

A critical aspect of the integration is synchronizing order and payment data between GNU Taler and
the ERP system. This process includes:

« Mapping data flows between the systems to ensure that every transaction is accurately captured
in both platforms.

« Utilizing Taler’s webhook system to trigger real-time updates for payment statuses, refunds, and
order changes, ensuring ERP data remains up-to-date.

+ Creating reconciliation workflows to resolve discrepancies between systems during synchroniza-
tion.

This synchronization not only improves operational efficiency but also reduces the risk of data incon-
sistencies that could lead to errors in financial reporting.

Implementing Phased Rollout for Core Functionalities

To ensure a smooth transition, the integration process should adopt a phased rollout strategy across
key functional areas. Each phase should begin with testing in controlled environments to identify
potential issues before full deployment. Suggested phases include:

a. Inventory Management

+ Begin by synchronizing categories and items between Taler and the ERP system.
+ Implement batch processing for large inventory updates to minimize performance bottlenecks.
+ Use test environments to validate inventory accuracy before moving to production.

b. Order Management

Bohdan Potuzhnyi, Vlada Svirsh 82

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

« Integrate order creation workflows with the ERP to allow seamless processing from Taler to the
ERP system.

+ Test edge cases, such as incomplete orders or simultaneous updates, to ensure stability.

« Gradually expand order types (e.g., transfer on order being created, orders from different internal
systems of ERP) as confidence in the integration grows.

c. Refund Handling

+ Design refund workflows to reconcile customer refunds initiated in Taler with ERP records.
« Introduce robust error handling mechanisms to account for delays or failed refund transactions.
+ Monitor user feedback during testing to refine the process before scaling.

This phased approach allows businesses to address challenges incrementally, reducing the risk of
widespread disruption.

Testing Environments and Continuous Improvement

Establishing a robust testing environment is essential for validating the integration at each stage. Key
considerations include:

+ Using sandbox environments for both GNU Taler and the ERP system to simulate real-world
scenarios without impacting live data.

+ Running stress tests to evaluate the performance of the integration under high transaction
volumes.

+ Implementing automated testing frameworks to streamline validation processes and identify
issues proactively.

Additionally, feedback loops should be established to gather insights from users and stakeholders,
enabling continuous improvement and adaptation.

Handling Edge Cases and Failures

No integration is complete without mechanisms to address edge cases and failures. This includes:

+ Designing fallback procedures for failed transactions, such as retry mechanisms or manual
interventions.

+ Implementing logging and monitoring tools to track synchronization delays and discrepancies
in real time.

+ Creating error resolution workflows to address issues with minimal operational impact.

By proactively preparing for edge cases, businesses can ensure that the integration remains resilient
and reliable.

Bohdan Potuzhnyi, Vlada Svirsh 83

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

6 Conclusion

6.1 Key Findings

The study demonstrates that integrating GNU Taler with ERP systems like SAP and Dolibarr has the
potential to significantly enhance operational efficiency. The proposed framework highlights how
automation can reduce manual workflows, improve data accuracy, and streamline payment and order
reconciliation processes.

6.2 Practical Implications

Thetheoreticalintegration offers valuable insights for businesses looking to modernize their operations.
SMEs, in particular, can benefit from the privacy-focused payment features of GNU Taler combined with
the advanced resource management capabilities of ERP systems like SAP and Dolibarr. By enabling
real-time data synchronization and improved transaction transparency, the integration framework
could help businesses reduce costs, enhance customer experiences, and adapt to evolving digital
payment trends.

6.3 Future Work

Possible directions include migrating to Fiori applications for enhanced usability and adding further
functionalities, notably supporting GNU Taler as the primary data source (“source of truth”). Such
enhancements would be particularly impactful, enabling complete data transfers from Taler into SAP,
significantly broadening the integration’s use cases. Specifically, this would allow better support
for fully automated systems, such as vending machines, significantly improving their operational
efficiency and reducing end-user costs through increased automation. Because SAP already embeds
discount-management and pricing strategies, the integration can also be extended to support more
complex pricing scenarios. Additionally, further SAP Sales Conditions could be incorporated into the
configuration, allowing a more fine-tuned selection methodology for initiating Taler payments.

Since the successful SAP integration demonstrates the feasibility of connecting GNU Taler to large ERP
systems, it would be interesting to explore other solutions such as Odoo, Dolibarr, or Tryton. Further
findings from these experiments would help refine Taler’s Merchant Backend to better align with such
integrations.

Bohdan Potuzhnyi, Vlada Svirsh 84

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

References

[1]

R. M. Stallman, Free software, free society: Selected essays of richard m. stallman. Boston, MA,
USA: GNU Press, Free Software Foundation, 2002. Available: https://www.gnu.org/philosophy/f
sfs/rms-essays.pdf

“GNU taler: Privacy-preserving payment system.” GNU Project, 2024. Available: https://taler.ne
t/

F. Dold, “The GNU taler system: Practical and provably secure electronic payments,” Thesis,
Université de Rennes 1, Inria, 2019.

“Dolibarr open source ERP and CRM.” Dolibarr Foundation, 2024. Available: https://www.doli
barr.org/

D. Chaum, C. Grothoff, and T. Moser, “How to issue a central bank digital currency,” Swiss
National Bank Working Papers, no. 3, pp. 1-34, 2021.

“What is copyleft?” GNU Project, 2025. Available: https://www.gnu.org/licenses/copyleft.en.h
tml

Taler merchant backend manual. Taler Systems SA, 2024. Accessed: Oct. 22, 2024. [Online].
Available: https://docs.taler.net/taler-merchant-manual.html

“GNU taler core API - merchant documentation.” GNU Taler Project, 2024. Available: https:
//docs.taler.net/core/api-merchant.html

“GNU taler merchant API - YAML specification.” GNU Taler Project, 2024. Available: https:
//git.taler.net/erp-integration-spec.git/tree/taler_api/Merchant-APl.yaml

“GNU taler merchant API - postman collection.” GNU Taler Project, 2024. Available: https:
//git.taler.net/erp-integration-spec.git/tree/taler_api/GNU%20Taler%20Merchant%20API.p
ostman_collection.json

J. Frye and M. Newman, Financial accounting in SAP ERP: Business user guide. Rheinwerk
Publishing, 2017.

“SAP history: 1972 to 1980.” SAP SE, 2025. Available: https://www.sap.com/about/company/hi
story/1972-1980.html

R. Anderson, Using SAP s/4HANA: An introduction for business users. Rheinwerk Publishing, 2019.
K. Kingsley, Introducing SAP bank communication management in SAP s/4HANA. Rheinwerk
Publishing, 2020.

F. Farber, N. May, W. Lehner, P. Grol3e, I. Miiller, and J. Dees, “The SAP HANA database: An
architecture overview,” IEEE Data Engineering Bulletin, vol. 35, no. 1, pp. 28-33,2012.

J. Boeder and B. Groene, The architecture of SAP ERP: Understand how successful software works.
Books on Demand, 2014.

P. Mandal and A. Gunasekaran, “Issues in implementing ERP: A case study,” European Journal of
Operational Research, vol. 146, no. 2, pp. 274-283, 2003.

Bohdan Potuzhnyi, Vlada Svirsh 85

https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
https://taler.net/
https://taler.net/
https://www.dolibarr.org/
https://www.dolibarr.org/
https://www.gnu.org/licenses/copyleft.en.html
https://www.gnu.org/licenses/copyleft.en.html
https://docs.taler.net/taler-merchant-manual.html
https://docs.taler.net/core/api-merchant.html
https://docs.taler.net/core/api-merchant.html
https://git.taler.net/erp-integration-spec.git/tree/taler_api/Merchant-API.yaml
https://git.taler.net/erp-integration-spec.git/tree/taler_api/Merchant-API.yaml
https://git.taler.net/erp-integration-spec.git/tree/taler_api/GNU%20Taler%20Merchant%20API.postman_collection.json
https://git.taler.net/erp-integration-spec.git/tree/taler_api/GNU%20Taler%20Merchant%20API.postman_collection.json
https://git.taler.net/erp-integration-spec.git/tree/taler_api/GNU%20Taler%20Merchant%20API.postman_collection.json
https://www.sap.com/about/company/history/1972-1980.html
https://www.sap.com/about/company/history/1972-1980.html

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

[18]

[19]

[22]

[24]

L. K. Lau, Managing business with SAP: Planning, implementation, and evaluation. 1Gl Global,
2005.

F. M. Elbahri, O. I. Al-Sanjary, and M. A. M. Ali, “Difference comparison of SAP, oracle, and
microsoft solutions based on cloud ERP systems: A review,” in 2019 IEEE 15th international
colloquium on signal processing & its applications (CSPA), 2019, pp. 247-251. doi: 10.1109/C-
SPA.2019.8695976.

T. Mladenova, “Open-source ERP systems: An overview,” in 2020 international conference auto-
matics and informatics (ICAl), 2020, pp. 203-207. doi: 10.1109/ICAI50593.2020.9311331.

A. Magnusson, “A framework for selecting an ERP open source system: A case study.” Lund
University, LU-CS-EX, 2016. Available: https://lup.lub.lu.se/student-papers/record/8900113/fil
€/8900116.pdf

L. Aversano, “Issue reports analysis in enterprise open source systems,” in Proceedings of the
21st international conference on enterprise information systems (ICEIS), SCITEPRESS, 2019, pp.
234-241. Available: https://www.scitepress.org/Papers/2019/77578/77578.pdf

B. Beghman, “Integration of business intelligence system and management information sys-
tems: An open-source approach.” Core.ac.uk, 2011. Available: https://core.ac.uk/download/pd
f/148828825.pdf

E. Kadasah and O. Alrwais, “Evaluation of training modules in open source ERP,” International
Journal of Information Technology, 2022, Available: https://www.researchgate.net/publication
/361326041

“Taler merchant integration guide.” Taler Operations AG, 2024. Available: https://stage.taler-
ops.ch/en/merchants.html

“SAP r/3 end of support.” SAP SE, 2025. Available: https://pages.community.sap.com/topics/a
bap/netweaver-maintenance-strategy

“SAP ABAP git repository.” abapGit, 2025. Available: https://docs.abapgit.org/

“GNU taler SAP integration git repository.” GNU Taler Project, 2025. Available: https://git.taler.
net/taler-sap-integration.git/

Taler merchant backend tutorials. Taler Systems SA, 2025. Accessed: Apr. 15, 2025. [Online].
Available: https://tutorials.taler.net/merchant/merchant-backoffice

“SAP digital payments add-on.” SAP SE, 2025. Available: https://www.sap.com/products/finan
cial-management/digital-payments-addon.html

Bohdan Potuzhnyi, Vlada Svirsh 86

https://doi.org/10.1109/CSPA.2019.8695976
https://doi.org/10.1109/CSPA.2019.8695976
https://doi.org/10.1109/ICAI50593.2020.9311331
https://lup.lub.lu.se/student-papers/record/8900113/file/8900116.pdf
https://lup.lub.lu.se/student-papers/record/8900113/file/8900116.pdf
https://www.scitepress.org/Papers/2019/77578/77578.pdf
https://core.ac.uk/download/pdf/148828825.pdf
https://core.ac.uk/download/pdf/148828825.pdf
https://www.researchgate.net/publication/361326041
https://www.researchgate.net/publication/361326041
https://stage.taler-ops.ch/en/merchants.html
https://stage.taler-ops.ch/en/merchants.html
https://pages.community.sap.com/topics/abap/netweaver-maintenance-strategy
https://pages.community.sap.com/topics/abap/netweaver-maintenance-strategy
https://docs.abapgit.org/
https://git.taler.net/taler-sap-integration.git/
https://git.taler.net/taler-sap-integration.git/
https://tutorials.taler.net/merchant/merchant-backoffice
https://www.sap.com/products/financial-management/digital-payments-addon.html
https://www.sap.com/products/financial-management/digital-payments-addon.html

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Appendices

Appendix A: Webhook documentation for Taler

Webhook Events The GNU Taler Merchant Backend supports various webhook events that can

trigger HTTP(S) requests to external servers based on specific actions such as payments, refunds, and

inventory updates.

Path Table

Event Type Trigger Condition

order_pay Payment for an order is received
order_refund Refund is issued for an order
order_settled An order is fully settled

category_added A new product category is added

category_updated A product category is updated

category_deleted A product category is deleted

inventory_added A new inventory product is added

Provided Data Fields

contract_terms, order_1id

timestamp,order_-d,
contract_terms,
refund_amount, reason

order_1id

webhook_type,
category_serial,
category_name,
merchant_serial

webhook_type,
category_serial,
old_category_name,
category_name,
category_name_i18n,
old_category_name_il8n

webhook_type,
category_serial,
category_name

webhook_type,product_serial,
product_id,description,unit,
taxes,price, total_stock,
total_sold, total_lost,
address, next_restock,
minimum_age

Bohdan Potuzhnyi, Vlada Svirsh

87

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Event Type Trigger Condition Provided Data Fields

inventory_updated A productin inventory is updated webhook_type, product_serial,
old_description,description,
old_price,price,total_stock,
etc.

inventory_deleted A productis deleted from inventory webhook_type, product_serial,
product_id,description,price,
total_stock, total_sold,
total_Tlost

Webhook Data Fields

Order Pay Events

+ Description: Triggered when payment for an order is successfully completed.
+ DataFields:

- contract_terms: JSON object of the contract terms.
- order_1d: Unique identifier of the paid order.

Order Refund Events

+ Description: Triggered when a refund is processed for an order.
 Data Fields:

- timestamp: Time of refund (in nanoseconds since 1970).

- order_1id: ID of the refunded order.

- contract_terms: JSON of the contract terms of the refunded order.
- refund_amount: Amount refunded.

- reason: Reason for the refund (provided by merchant staff).

Order Settled Events

« Description: Triggered when an order has been fully settled, meaning all payments are wired to
the merchant.
+ DataFields:

- order_-1d: Unique identifier of the settled order.

Bohdan Potuzhnyi, Vlada Svirsh 88

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Category Events

+ Category Added:

webhook_type: category_added

category_serial: Unique ID of the category.

category_name: Name of the category.

merchant_serial: ID of the associated merchant.
« Category Updated:

- Includes old and new category names, localized fields (category_name_1i18n).
+ Category Deleted:

- webhook_type: category_deleted
- category_serial:ID of the deleted category.

Inventory Events

 Inventory Added:

- Includes product details such as description,unit, taxes,price, total_stock,
address,andminimum_age.

+ Inventory Updated:

- Includes updated and previous values of product details such as description, price,
and total_stock.

+ Inventory Deleted:

- webhook_type: inventory_deleted
- product_serial: Unique product ID of the deleted item.

Webhook Configuration

1. Webhooks are set up using the following endpoints:

+ Create a Webhook: POST /instances/{INSTANCE}/private/webhooks

« Inspect Webhooks: GET /instances/{INSTANCE}/private/webhooks

« Update a Webhook: PATCH /instances/{INSTANCE}/private/webhooks/{
WEBHOOK_ID}

Bohdan Potuzhnyi, Vlada Svirsh 89

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

« Delete a Webhook: DELETE /instances/{INSTANCE}/private/webhooks/{
WEBHOOK_ID}

2. Webhook Payload: Webhook payloads are defined using Mustache templates. Depending on
the triggering event, the templates receive event-specific data fields for expansion.

3. Retries: Webhooks will automatically retry (with increasing delays) if the target server returns a
temporary error status (e.g., HTTP 5xx).

Bohdan Potuzhnyi, Vlada Svirsh 90

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Appendix B: Ul Samples
Dashboard Instance: Taler Merchant Mensa Automat #1 V¥
Notifications Data: synced
Merchant status: running
Orders Orders in this month:
Inventory (13 3 7 2 }
closed refunded waiting for bank transfer failed
Transactions Transactions in this month:
Settings [407 CHF 113 CHF 83 CHF]
confirmed for transfer for payment

@LER

Figure 42: Ul: Main Dashboard

Bohdan Potuzhnyi, Vlada Svirsh 91

Taler SAP integration: Theoretical Framework and Practical Implementation

2024-2025

Dashboard

Notifications

Filters: |

Orders

Inventory

Transactions

Settings

@LER

Dashboard

Notifications

Orders

Inventory

Transactions

Settings

@LER

Figure 43: Ul: Inventory View

d ~ Number Product price Products
product1 5434 $15 670 Es‘articles Z eoe
phone1 5215 $3231 ?ﬂarncles eee
product2 3765 $789 ﬁgfrticles Z ooe
product3 2145 $15670 %:1[articles Z oo
phone2 4573 $3231 ﬁs(ar!icles eoo
phone3 6734 $5674 Z‘Emcles e
phoned 1298 $789 ﬁ)s‘articles eoe
Filters: [}
Date v Type Field Status Description
23.06.2018 message order No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. coe
18.05.2018 message order No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. eoe
3.05.2018 message category No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. eoe
24.04.2018 message transaction No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. eoe
23.06.2018 message inventory No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. eoe
18.05.2018 error order Resolved Lorem ipsum dolor sit amet, consectetur adipiscing elit. Z 00
3.05.2018 warning inventory Review Lorem ipsum dolor sit amet, consectetur adipiscing elit. Z eoe
24.04.2018 message category No action Lorem ipsum dolor sit amet, consectetur adipiscing elit. eoe

Figure 44: Ul: Notification View

Bohdan Potuzhnyi, Vlada Svirsh

92

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Dashboard

Filters: []
NOtIflcatlonS Date v Number Amount Products Payment Delivery Status
23.06.2018 5434 $15 670 5 articles Paid 23.06.2018 Not sent Z ...
orders list the data driver
18.05.2018 5215 $3231 3 articles Pending payment 18.05.2018 Confirmed = eoe
list the data driver
Inventory
3.05.2018 4564 $5674 7 articles Delay 13 days 3.05.2018 Pending payment = eoe
list the data driver
Transactions
24.04.2018 3765 $789 5 articles Paid 24.04.2018 Paid Z = ...
list the data driver
Settlngs 23.06.2018 2145 $15 670 24 articles Paid 23.06.2018 Loaded Z = ...
list the data driver

18.05.2018 4573 $3231 3 articles Pending payment 18.05.2018 Delivered = o0
list the data driver

3.05.2018 6734 $5674 7 articles Paid 3.05.2018 Partially loaded = eee
list the data driver

24.04.2018 1298 $789 5 articles Paid 24.04.2018 Partially delivered - eoe
list

the data driver

@LER

Figure 45: Ul: Orders View

Dashboard Filters: |)

eIE] Date v Number ~ Amount Products Payment Delivery Status
Notifications
23.06.2018 5434 $15 670 5 articles Paid 23.06.2018 Not sent L T e
list the data driver
Orders
18.05.2018 5215 $3231 3 articles Pending payment 18.05.2018 Confirmed b eoe
list the data driver
Inventory
jre] eee
.
Transactions 24042018 3765 $789 5 articles Paid 24.04.2018 Paid Z @ ..
list the data driver
. 23.06.2018 2145 $15 670 24 articles Paid 23.06.2018 Loaded Z @ ...
Settings i i er

18.05.2018 4573 $3231 3 articles Pending payment 18.05.2018 Delivered o 00
list the data driver

3.05.2018 6734 $5674 7 articles Paid 3.05.2018 Partially loaded = eee
list the data driver

24.04.2018 1298 $789 5 articles Paid 24.04.2018 Partially delivered = eoe
list the data driver

@LER

Figure 46: Ul: Transaction View

Bohdan Potuzhnyi, Vlada Svirsh 93

Taler SAP integration: Theoretical Framework and Practical Implementation 2024-2025

Dashboard Taler Merchant Backend URL:
Notifications https://ultimate.merchant.business.com
Access token:
Orders
megasecuretoken1234578
Inventory
Main business system:
Transactions ® ERP O Taler
Settings

@LER

Figure 47: Ul: Settings View

Dashboard Taler Merchant Backend URL:
Notifications [https://ultimate.merchant.business.com J
Access token:
Orders
[megasecuretoken1234578 J
Inventory
Choose main business system:
Transactions O ERP O Taler
Sl [Add Taler Merchant]

@LER

Figure 48: Ul: Settings Set-up View

Bohdan Potuzhnyi, Vlada Svirsh 94

	Introduction
	Background
	Problem Statement
	Key Challenges

	Criteria of Working System
	Conclusion

	Technology Overview of Existing Components
	Overview of Taler Merchant Backend
	Free Software Nature and Architecture
	Handling Digital Transactions
	Business Tools of the Taler Merchant Backend
	GNU Taler API & Webhooks

	Overview of SAP
	History and Evolution of SAP
	Key Modules in SAP
	Integration Capabilities of SAP
	Benefits of using SAP

	Overview of Dolibarr
	Key Features and Modules in Dolibarr
	Integration Capabilities of Dolibarr
	Benefits of Using Dolibarr

	Existing Integration Solutions

	Technical Design of Integration Solution
	Design Overview
	High-level Architecture
	Infrastructure and Packaging
	Centric Integration Design

	Taler-Centric Integration
	High-level Data Flow
	Inventory Management Process
	Sales Process with Transfer After Order is Created
	Sales Process with Transfer After Order is Paid
	Refund Process

	ERP-Centric Integration
	High-level Data Flow
	Inventory Management Process
	Sales Process
	Refund Process
	Payment Reconciliation Process

	User Interface

	Practical Implementation in the SAP S4/HANA Environment
	Integration Overview
	System Configuration

	Package Implementation
	Architectural Updates
	Database Tables Overview
	User Interface
	Data Synchronization

	Transaction/Order Flow
	Challenges and Solutions
	User interface and how did we even end up here…
	Security and Compliance of this package
	Operational Challenges
	Benefits and Added Value

	Discussion
	Limitations
	Security Considerations
	Integration Strategy

	Conclusion
	Key Findings
	Practical Implications
	Future Work

	References
	Appendices
	Appendix A: Webhook documentation for Taler
	Appendix B: UI Samples

